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DiffBulk: Enhancing Spatial Transcriptomic
Prediction with Diffusion-Based Training
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Abstract— Spatial Transcriptomics (ST) technology de-
tects gene expression from tissue biopsies, playing an
emerging role in cancer diagnosis and precision medicine.
However, the high cost of ST technology limits its broader
application. Recently, deep learning approaches have pro-
vided insight into predicting gene expression based on
H&E-stained histopathology images. Nevertheless, the re-
lationship between morphological features and gene ex-
pression is highly complex. To address these challenges,
we propose DiffBulk, a novel two-stage framework that
leverages conditional diffusion models to learn expressive
image representations enriched with gene expression in-
formation. In the first stage, we introduce a gene-to-image
conditional diffusion model equipped with a permutation-
invariant open-embedding gene encoder, which enables
unified training across diverse gene panels. In the sec-
ond stage, diffusion-derived features are fused with repre-
sentations from a pathology foundation model, effectively
bridging the domain gap and improving downstream gene
expression prediction. We evaluate DiffBulk on high-quality
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Xenium ST data curated from the HEST dataset and the
CrunchDAO challenge, constructing tile-level pseudo-bulk
datasets for training and evaluation. Extensive experiments
demonstrate that DiffBulk consistently outperforms state-
of-the-art baselines across all metrics for gene expres-
sion prediction. These findings highlight the potential of
diffusion-based gene-image representation learning and
suggest promising directions for future research.

Index Terms— Gene Expression Prediction, Conditional
Diffusion Model, Open-Embedding, Foundation Model.

I. INTRODUCTION

PATHOLOGICAL image analysis remains the gold stan-
dard in clinical practice for cancer diagnosis. By exam-

ining H&E-stained histology slides, pathologists assess tissue
conditions based on morphological changes [1]. Beyond visual
observation, profiling gene expression in tissues offers comple-
mentary molecular information, providing deeper insight into
tumor biology [2]. While traditional transcriptomic techniques
such as bulk [3], [4] and single-cell RNA sequencing [5],
[6] offer comprehensive gene expression profiling, they in-
herently disrupt spatial organization due to tissue dissocia-
tion [7]. In contrast, spatial transcriptomics (ST) addresses
this limitation by capturing gene expression at defined tissue
locations, thus integrating molecular signals with histological
context [8], [9]. To reduce technical noise, pseudo-bulk expres-
sion further aggregates gene signals from spatially adjacent
regions [10], [11]. Unfortunately, ST assays remain expensive
and labour-intensive, prompting intense interest in predicting
gene expression directly from pathological images.

Recent advances in deep learning offer a trending possi-
bility. Early methods such as ST-Net [12], DeepSpaCE [13],
HisToGene [14], and Hist2ST [15] cast the image-to-ST task
as a regression problem, directly mapping visual features
to gene-expression values. To mitigate data scarcity, several
studies pretrain foundation models (FMs) on large histopathol-
ogy corpora via self-supervised learning and subsequently
fine-tune them on limited gene-expression datasets [16]–
[19]. However, the histology-to-transcriptomics mapping is
inherently ill-posed: diverse morphological patterns can yield
similar bulk expression profiles, whereas subtle visual dif-
ferences may accompany pronounced transcriptional shifts.
Accordingly, direct-regression models produce predictions that
average across multiple plausible molecular states, thereby
obscuring biologically meaningful spatial–gene co-patterns.
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To address these challenges, two-stage frameworks have
emerged as a promising solution. These methods decouple the
learning process into a pretraining stage and a downstream
prediction or regression stage. During pretraining, by explicitly
incorporating gene modality, the model learns to capture the
underlying relationship between gene expression profiles and
histological features. This multimodal feature space reduces
the ambiguity inherent in direct regression and guides the
downstream predictor toward more plausible predictions. For
example, BLEEP [20] trains both an image encoder and
an MLP-based gene encoder using a contrastive learning
objective. Then, they utilize the pretrained image encoder to
retrieve the top-k most similar histological images from the
reference dataset. Their gene expression values are averaged
to produce the final prediction. However, contrastive learning
assumes a clear semantic boundary between positive and
negative pairs. In the context of gene expression prediction,
this assumption fails, as visually similar histological images
can exhibit different gene expression profiles. Treating near-
positives as negatives introduces label noise, which misguides
representation learning. Moreover, its MLP-based gene en-
coder is limited to fixed gene sets and fails to preserve the
permutation invariance property-a fundamental property of
gene expression data whereby swapping two genes (genei
and genej) along with their expression values (vi and vj)
should yield identical encodings. However, because the MLP’s
positional weights are fixed, permuting the input order of genes
produces different encodings, thereby breaking permutation
invariance.

Recently, diffusion-based pretraining has gained traction as
a means to learn richer image representations. Prior work
has shown its benefits across a variety of downstream tasks,
including classification [21]–[24], segmentation [25]–[28], and
semantic correspondence [29]–[31]. However, gene-to-image
diffusion pretraining remains underexplored. Although it holds
potential for bridging the modality gap between histological
images and transcriptomic profiles, integrating heterogeneous
gene sets into a single diffusion framework poses a key chal-
lenge: one must design a gene encoder that can flexibly handle
arbitrary panels while preserving permutation invariance.

To address this gap, we introduce DiffBulk, a novel two-
stage framework for tile-level pseudo-bulk gene expression
prediction. In the first stage, a gene-to-image conditional
diffusion model [32], [33] is trained on paired image–gene
expression data. We introduce an open-embedding gene en-
coder that preserves permutation-invariance property across
heterogeneous gene sets. To ensure that the model could
complete the gene prediction task without gene condition,
we introduce a Probabilistic Masking Switch (PMS) module,
which randomly omits gene expression values with probability
p. In the second stage, the pretrained conditional diffusion U-
Net serves as a frozen backbone for gene prediction. Notably,
we inject low-level noise into the histology tiles and pass
them through the frozen diffusion model to obtain multi-scale
intermediate activations. These activations are then fused by
a Multi-Scale Feature Extraction Network (MSFE-Net) and
integrated with fm-based features for final gene prediction.

Lastly, we evaluate DiffBulk on three high-quality Xenium

ST datasets by creating tile-level pseudo-bulk from HEST [34]
and CrunchDAO challenge [35]. Specifically, we construct
the HEST-Bowel, HEST-Pancreas, and CrunchDAO-Bowel
datasets, comprising 16,816, 7,501, and 13,021 pseudo-bulk
image–gene expression pairs, respectively. We benchmark our
method against four task-specific gene prediction models [12]–
[14], [20] and three foundation models [16]–[18]. DiffBulk
achieves state-of-the-art performance on all three datasets. Our
main contributions are summarized as follows:

1) We propose DiffBulk, a novel two-stage framework for
tile-level pseudo-bulk gene expression prediction. This
paradigm naturally handles the one-to-many ambiguity
and learns robust, diffusion-based image representations
that bridge histology and transcriptomics.

2) To provide a flexible condition across arbitrary gene
sets, we design an open-embedding gene encoder that
preserves the permutation invariance of gene expres-
sion data. This design enhances the scalability of
our framework to accommodate diverse and expanding
gene–image datasets.

3) We introduce a Probabilistic Masking Switch (PMS)
module during diffusion pretraining. PMS guarantees
that the pretrained U-Net remains effective for down-
stream gene prediction.

4) We perform extensive evaluations on three tile-level
pseudo-bulk ST datasets from HEST and Crunch-
DAO challenges. DiffBulk consistently outperforms ex-
isting task-specific and fm-based methods. The code
is publicly available at https://github.com/
iMVR-PL/DiffBulk.

II. RELATED WORK

A. Image to Gene Expression Prediction

The task of predicting gene expression from histopatho-
logical images has received increasing attention in recent
years. Early models such as ST-Net [12] and DeepSpaCE [13]
adopt a transfer learning approach, where 224×224-pixel
image patches centered on ST spots are extracted and passed
through pretrained convolutional neural networks (DenseNet-
121 [36] and VGG16 [37], respectively) followed by a lin-
ear regressor to predict gene expression values. To enhance
predictive accuracy and better capture spatial dependencies,
more recent models have introduced architectural innovations.
HisToGene [14] combines Vision Transformers (ViTs) [38]
with dynamic convolutional networks to capture long-range
dependencies and local contextual cues within tissue sections.
Similarly, Hist2ST [15] employs a convolutional mixer module
to integrate local image textures with spatial gene expression
patterns. While these approaches have demonstrated promis-
ing results, they are based on direct regression frameworks
that overlook the ill-posed nature of the task, where histo-
logical features alone may be insufficient to fully recover
gene expression profiles. To mitigate the ill-posed nature of
direct regression, BLEEP [20] proposes a two-stage contrastive
learning framework. It aligns image and gene embeddings
during pretraining, then retrieves top-k similar reference tiles
for prediction via expression averaging. However, contrastive



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 3

learning assumes clear semantic boundaries between positive
and negative pairs, which rarely hold in this setting. Visually
similar tiles may have divergent gene profiles, leading to
noisy supervision. Furthermore, BLEEP’s MLP-based gene
encoder is limited to fixed gene sets and violates permutation
invariance property of gene expression data. A closely related
work is Stem [39], which employs a conditional diffusion
model to directly model the distribution of gene expression
conditioned on corresponding images. After training, gene
expression predictions are obtained via the standard denoising
process. While both Stem and our approach utilize conditional
diffusion models, our work focuses on a different objective:
rather than using diffusion for generation, we aim to explore
and extract diffusion-based representations that encode rich
image-gene relationships, thereby enhancing the prediction of
pseudo-bulk gene expression.

B. Pathological Foundation Models
Inspired by recent breakthroughs in computer vision, large-

scale pathology foundation models (FMs) have been developed
to learn general-purpose visual representations. UNI [16] and
GigaPath [17] pretrained large Vision Transformers on over
100 million and 1.3 billion pathology images, respectively, us-
ing a self-supervised strategy inspired by DINOv2 [40]. These
models demonstrate remarkable transferability across various
downstream tasks such as tumor classification and subtyping.
Other efforts have explored multi-modal alignment strategies.
PLIP [18] employs contrastive learning on 208,414 paired
pathology image–text samples, while CONCH [19] adapts the
CoCa framework [19] to jointly model visual and linguis-
tic representations, enabling flexible cross-modal reasoning.
Despite their strong image understanding capabilities, these
foundation models are trained without incorporating genomic
information. Consequently, the learned visual representations
may not align well with transcriptomic signals, resulting in a
domain gap when applied to gene expression prediction. This
task misalignment limits the direct applicability of general-
purpose FMs in gene modeling tasks, especially under data-
scarce conditions.

C. Diffusion-based Representations
Several recent studies have explored the internal represen-

tations and applications of diffusion models in biomedical
imaging. Recent works such as SDSeg [41], GM-SDE [42],
and MSDiff [43] extend diffusion modeling to segmentation
and image reconstruction tasks, demonstrating the versatility
of diffusion priors for learning structural and spatial rep-
resentations efficiently. Beyond these applications, Diffusion
Classifier [22] and DDAE [21] extract features from pretrained
diffusion models for image classification, achieving perfor-
mance comparable to contrastive learning [44] and masked
autoencoders [45]. DDPMSeg [26] and ODISE [25] aggre-
gate features from carefully selected layers and timesteps to
support semantic and panoptic segmentation, respectively. For
semantic correspondence, Zhang et al. [29] integrate diffusion-
based features with DINOv2 representations to improve spatial
alignment. Diffusion Hyperfeatures [30] further enhance this

line of work by consolidating multi-scale and multi-timestep
feature maps into dense descriptors. Although diffusion-based
representations have shown strong performance across diverse
tasks, their ability to model the complex and ill-posed relation-
ship between histological images and gene expression remains
underexplored, and effectively incorporating heterogeneous
gene sets as conditions in the diffusion framework remains
a challenge.

III. METHODOLOGY

A. Problem Formulation
To enable tile-level gene expression prediction, we curate

high-quality Xenium data to construct corresponding pseudo-
bulk expression profiles with the corresponding histopathol-
ogy image tiles. In particular, H&E-stained WSIs at 20X
magnification are divided into several non-overlapping image
tiles x ∈ Rw×h, where w and h denote the width and
height (in pixels) of each tile. For each tile, we aggregate
the corresponding pseudo-bulk gene expression g ∈ Rn1 ,
where n1 denotes the number of gene types. To ensure data
reliability, we apply expression normalization and quality
control procedures, including variance-based filtering of gene
expression and image feature filtering as described in [34].
This preprocessing yields a pseudo-bulk tile dataset composed
of paired samples (x,g), suitable for training models to predict
gene expression from visual pathological features.

Formally, the goal is to learn a function fθ : Rw×h → Rn1 ,
parameterized by θ, that maps each image tile x to its corre-
sponding gene-expression vector g. This problem is ill-posed,
as visually similar tiles can have different gene expression
profiles. To overcome the shortcomings of direct regression,
we propose a diffusion-based two-stage framework. First,
we model the conditional distribution p(x|g) to capture the
full diversity of morphology given gene expression; then, we
perform regression on individual genes. This strategy preserves
complex spatial–gene co-patterns that direct regression would
otherwise average out.

B. DiffBulk Framework
As illustrated in Figure 1, DiffBulk comprises two training

stages: gene-to-image conditional diffusion training and down-
stream gene expression prediction. In the conditional diffusion
training stage, we introduce an open-embedding gene encoder
capable of preserving permutation-invariant property. This
encoder is integrated with a gene-to-image diffusion model,
which implicitly captures the complex relationship between
gene expression and their corresponding histological image
tiles. In the downstream stage, diffusion-derived features zdiff
from the pretrained U-Net and foundation model features zfm
from an fm encoder are fused via a gated module to produce
an enhanced representation z, which is used to predict pseudo-
bulk gene expression.

1) Open-Embedding Gene Encoder: Existing MLP-based
gene encoders require a fixed input size and violate the
permutation-invariant property of gene expression data. To
address these limitations, we propose an open-embedding
gene encoder cgene(·), which supports arbitrary gene sets and
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Fig. 1. Overview of the proposed DiffBulk framework. The part (a) illustrates the gene-to-image conditional diffusion training stage, where a
permutation-invariant open-embedding gene encoder guides the generation of pathology image features. The part (b) shows the downstream
pseudo-bulk gene expression prediction stage, where diffusion-based features are fused with FM features via a gated fusion module for gene
expression prediction.

preserves structural invariance. As illustrated in Figure 1, each
gene type is treated as a token with a learnable embedding
gi ∈ Rdim. All embeddings are collected in a global gene
vocabulary matrix V ∈ RN×dim, where N is the total number
of unique genes across the training cohorts. This design allows
seamless incorporation of diverse gene panels from multiple
sources. To integrate expression magnitude, we compute an
expression-aware gene embedding embi by taking the element-
wise product between the gene encoding gi and its correspond-
ing expression value vi ∈ R.

Given a gene expression profile from a specific tis-
sue region or tile, consisting of n1 gene-expression pairs
{(g1, v1), . . . , (gn1

, vn1
)}, we construct the input embedding

Embin ∈ Rn1×dim by stacking the expression-aware embed-
dings embi. To guarantee permutation invariance, we then
pass Embin through a transformer-based gene encoder (no
positional encodings), leveraging the fact that vanilla trans-
former [46] architectures without positional encoding are
order-agnostic. After n identical blocks in the encoder, we
obtain the contextualized output Embout ∈ Rn1×dim. Finally,
we introduce a learnable query vector q ∈ R1×dim and apply an
attention-based aggregation over the n1 token embeddings to
produce a single unified gene representation. The aggregation
process is formulated as

K = Wk · Embout, V = Wv · Embout, (1)

y = Softmax(
qKT

√
n1

)V, (2)

where y ∈ R1×dim represents the final aggregated gene
embedding. With the gene encoder cgene(·), we are able to
perform joint training across multiple datasets with varying
gene sets and explore a unified and expressive embedding
space for gene features.

2) Two-Stage Training Framework: We propose a two-stage
training framework to address the limitations of direct re-
gression and contrastive pretraining approaches. In the first
stage, to capture the complex relationship between histological
images and corresponding gene expression profiles, we intro-
duce a conditional diffusion training strategy. Our framework
is built upon a modified score-based diffusion model with a
U-Net backbone, following the EDM2 paradigm [47]. This
formulation enables the model to learn rich pathology repre-
sentations conditioned on gene expression vectors, effectively
bridging the modality gap between transcriptomic and visual
domains.

Our approach adopts a σ-dependent skip connection strat-
egy, which allows the network to dynamically adapt to differ-
ent levels of signal corruption during the denoising process.
This mechanism enables the model to interpolate between
two objectives: recovering the clean image x when the noise
level σ is low, and estimating the injected noise component ϵ
when σ is high. Formally, the conditional denoising function
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is expressed as:

Dθ1(xσ;σ,g) = cskip(σ)xσ

+ cout(σ)Fθ1

(
cin(σ)xσ; cnoise(σ), cgene(g)

)
,

(3)

where xσ = x + ϵ is the noisy image input, and ϵ ∼
N (0, σ2I) is the Gaussian noise. Fθ1 denotes the U-Net-based
denoising network. The modulation functions cin(σ), cskip(σ),
and cout(σ) are scale-dependent coefficients that modulate
the input signal, skip connection, and output contribution,
respectively, based on the noise level σ. In addition, cnoise(σ)
and cgene(g) provide conditional embeddings for the noise
level and gene expression profile, respectively.

The denoising task enables the model to leverage molecular
information for generating visual features. The skip connec-
tion, scaled by cskip(σ), directly injects the noisy input xσ into
the output. This process contributes to preserving structural
information, particularly when sigma is small and much of the
original image signal remains intact. In contrast, the residual
term produced by the denoising network Fθ provides a noise-
aware, gene-conditioned refinement that becomes increasingly
dominant as the noise level increases.

To ensure that the model remains effective in the down-
stream gene prediction task, where gene conditions are un-
available, we introduce the Probabilistic Masking Switch
(PMS) module. During diffusion pretraining, PMS randomly
drops the gene condition with a fixed probability p, encour-
aging the model to learn both conditional and unconditional
representations. The masking operation is defined as:

y =

{
∅ with probability p,

cgene(g) otherwise.
(4)

where cgene(g) denotes the gene embedding derived from the
expression profile g, and ∅ denotes the absence of any gene
condition. This design facilitates effective gene expression
prediction in the subsequent stage.

In the downstream stage, we aim to extract and refine
diffusion-based features by integrating them with FM-based
features. To this end, we introduce MSFE-Net (Multi-Scale
Feature Extraction Network), a lightweight feature adapter
designed to extract diffusion-based representations, denoted
as zdiff. MSFE-Net operates on the intermediate activations of
the U-Net, which was trained during the pretraining stage and
remains frozen in this phase.

To maintain alignment with the denoising paradigm during
diffusion pretraining, we inject low-level Gaussian noise ϵ
into the input pathology image, producing a perturbed image
xσ ∈ Rw×h. This noised image is then fed into the frozen U-
Net without gene conditioning. The network produces a set of
multi-scale feature activations Zσ = {z1σ, z2σ, . . . , zNσ }, where
each ziσ is extracted from the i-th block of the U-Net. These
activations encode varying levels of semantic and structural
information, influenced by both the input noise level and the
hierarchical depth of the network. In practice, we select a
subset S = {i1, i2, . . . , is} ⊆ {1, . . . , N} of blocks, typically
focusing on decoder blocks that are known to capture higher-
level semantic features, and apply MSFE-Net to each selected

activation.

f ij
σ = MSFE-Net(zijσ ), j = 1, . . . , s. (5)

The resulting multi-scale features are then concatenated to
construct the final diffusion-based representation zdiff =
Concat(f i1

σ , f i2
σ , . . . , f is

σ ). To enhance the expressiveness of
zdiff, we introduce a gated fusion mechanism to effectively
integrate diffusion-derived features with FM-extracted visual
features. Let zfm = FM(x) denote the visual features extracted
from the frozen FM encoder given an input image x. The
fusion process is defined as:

g = σ (Linear (Concat(zfm, zdiff))) , (6)
z = zfm + g ⊙ zdiff, (7)

where Linear(·) represents a fully connected layer, σ(·) is
the sigmoid activation function that bounds the gate values
within [0, 1], and ⊙ denotes element-wise multiplication. This
gating mechanism enables the model to dynamically weigh the
contribution of diffusion-derived features according to image
content. The enhanced feature z is then passed through a linear
projection layer to predict gene expression levels.

C. Objective Function

In the gene conditional diffusion training stage, the objec-
tive is formulated based on denoising score matching across
varying noise levels. For a fixed noise level σ, the training
loss is defined as:

L(Dθ1 ;σ) = E(x,g)∼pdata,ϵ∼N (0,σ2I)

[∥∥Dθ1(xσ;σ,g)− x
∥∥2
2

]
,

(8)
where x and g denote paired pathology images and gene
expression vectors, respectively, and ϵ represents Gaussian
noise added to the input image. The perturbed input is given
by xσ = x + ϵ. The total training objective is computed
by integrating over a range of noise scales, weighted by a
predefined function λ(σ):

argmin
θ1

L(θ1) = Eσ

[
λ(σ)L(Dθ1 ;σ)

]
, (9)

where λ(σ) balances contributions from different noise levels
and guides the model to perform well across the entire noise
spectrum.

In the second training stage, after obtaining the enhanced
image representation z, the model predicts gene expression
levels via a decoder. This decoder is implemented as a linear
projection layer tailored to the number of target genes:

ŷθ2 = fdecoder(z), (10)

where θ2 denotes the learnable parameters of the downstream
network, including MSFE-Net, the decoder, and the gated
fusion module. The training objective minimizes the mean
squared error (MSE) between the predicted and ground truth
gene expression:

argmin
θ2

L(θ2) =
1

n1
∥y − ŷθ2∥22 (11)
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IV. EXPERIMENTS

A. Datasets
We evaluate the effectiveness of our proposed method using

three publicly available tile-level pseudo-bulk datasets: two
from the HEST project [34], covering distinct tissue types, and
one from the CrunchDAO challenge [35]. We refer to them as
HEST-Bowel, HEST-Pancreas, and CrunchDAO-Bowel, con-
sisting of 3, 3, and 7 WSIs, respectively. The Xenium panels
for the three datasets contain 541 (HEST-Bowel), 538 (HEST-
Pancreas), and 460 (CrunchDAO-Bowel) genes, respectively.
The overlap of gene types between any two datasets ranges
from approximately 20% to 40%.

Each WSI was preprocessed by tiling H&E-stained histol-
ogy slides at 20X magnification into non-overlapping patches
of size 224 × 224 pixels. For each patch, gene expression
profiles were aggregated from the corresponding Xenium
spatial transcriptomics regions. Specifically, we first collected
all spots spatially located within a patch, then aggregated their
gene counts and applied a log(1 + x) normalization to obtain
the pseudo-bulk expression value associated with each tile.
We further filtered out tiles with poor illumination or low-
expression variance to ensure data quality. After preprocessing,
we obtained 16,816, 7,501, and 13,021 paired image–gene
samples for HEST-Bowel, HEST-Pancreas, and CrunchDAO-
Bowel, respectively. We further explored three prediction set-
tings based on expression variance thresholds, corresponding
to the top-100, top-200, and all-gene subsets.

To avoid data leakage, all 3-fold cross-validation splits
were performed strictly at the patient or slide level. For the
HEST datasets, each fold uses two WSIs for training and the
remaining one for testing. For the CrunchDAO-Bowel dataset,
the seven WSIs are grouped into folds of 3, 2, and 2 slides,
respectively. In all cases, tiles from the same WSI never appear
across folds. All hyperparameters were kept fixed across folds
to ensure consistency and reproducibility.

We report the Pearson Correlation Coefficient (PCC), Mean
Absolute Error (MAE), and Mean Squared Error (MSE) as
quantitative metrics. Results are expressed as µ± σ, where µ
and σ denote the mean and standard deviation computed over
all test samples.

B. Training DiffBulk
1) Training Procedure: In the gene-to-image conditional

diffusion training stage, we adopt EDM2 [47] as the back-
bone of our conditional diffusion model. The U-Net archi-
tecture consists of a symmetric encoder–decoder structure,
each composed of four scale blocks operating at spatial
resolutions of 224 × 224, 112 × 112, 56 × 56, and 28 × 28.
To reduce computational cost, self-attention is applied only
at the lowest resolution (28 × 28). Gene expression profiles
are incorporated via our transformer-based open-embedding
encoder, enabling unified training across HEST-Bowel, HEST-
Pancreas, and CrunchDAO-Bowel datasets. It contains two
identical transformer-encoder blocks. Furthermore, we set the
hyperparameter p = 0.5 following the formulation of the PMS.
The noise level σ is sampled from the log-normal distribution
ln(σ) ∼ N (Pmean, Pstd), with Pmean = −0.4 and Pstd =

1.0. The modulation functions were employed as follows:
cskip(σ) =

σ2
data

σ2+σ2
data

, cout(σ) = σ·σdata√
σ2+σ2

data

, cin(σ) = 1√
σ2+σ2

data

and cnoise = 1
4 ln(σ), where σdata = 0.5 denotes the expected

standard deviation of the training data.
In the downstream stage, we focus on predicting pseudo-

bulk gene expression for one of the HEST Bowel, HEST
Pancreas, or CrunchDAO Bowel datasets. The U-Net model
is kept frozen and serves as a feature extractor. We extract
multi-scale decoder activations from the U-Net and feed them
into the MSFE-Net to obtain the diffusion-based representation
zdiff. In parallel, we employ the PLIP image encoder [18] to
extract an fm-based feature zfm. To maintain consistency with
the denoising paradigm, we inject low-level Gaussian noise
with standard deviation σ = 0.01 into the input image during
both training and inference. The features zdiff and zfm are then
integrated via a gated fusion module, producing the final joint
representation z. This representation is subsequently passed
through a linear decoder to predict the gene expression levels.

2) Implementation Details: All experiments were imple-
mented using PyTorch [48]. In the gene-to-image diffusion
training stage, we trained on two NVIDIA GeForce RTX
A6000 GPUs. The optimizer used was Adam [49], with β1 =
0.9 and β2 = 0.99, along with an inverse square root learning
rate schedule. The initial learning rate was set to 0.01, and
a post-hoc exponential moving average (EMA) with a decay
length of 0.100 was applied to stabilize training performance.
For the downstream training, we utilized a single NVIDIA
GeForce RTX A6000 GPU. The optimization was conducted
using the AdamW optimizer [50], with a learning rate of
0.0001 and a weight decay of 0.00001.

3) Efficiency and Computational Complexity: To assess the
computational efficiency of DiffBulk, we analyze the training
and inference cost in terms of model size, FLOPs, and runtime.
The conditional diffusion U-Net with the integrated gene en-
coder in DiffBulk contains approximately 122.4M parameters,
resulting in approximately 25.66 GFLOPs per 224 × 224
tile. In comparison, the BLEEP baseline includes 24.3M
parameters and 4.11 GFLOPs, while the Gigapath foundation
model contains 1.13B parameters and 223.45 GFLOPs per tile.
Although diffusion pretraining introduces a moderate increase
in computational cost compared with lightweight baselines,
it remains substantially more efficient than fine-tuning large-
scale foundation models. The conditional diffusion pretraining
stage takes approximately 20 hours on two NVIDIA RTX
A6000 GPUs, whereas fully fine-tuning Gigapath typically
requires over 30 hours.

In the downstream stage, the diffusion backbone is frozen,
and the lightweight MSFE-Net contains only 2.5M trainable
parameters, making the training process highly efficient. Dur-
ing inference, DiffBulk combines diffusion-derived representa-
tions with a foundation-model branch, which naturally results
in additional computational overhead. Specifically, DiffBulk
processes 100 tiles in approximately 4000 ms, corresponding
to about 7 minutes per WSI containing 10,000 tiles. In
contrast, Gigapath alone processes 100 tiles in 3700 ms, or
roughly 6 minutes per WSI. Thus, DiffBulk increases inference
time by only 16.7%, a relatively small cost in real-world
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pathology workflows, where slide-level turnaround times are
dominated by upstream imaging and scanning stages rather
than per-tile computation. Overall, these results demonstrate
that DiffBulk provides meaningful gains with only modest
additional computational cost, achieving a favorable balance
between efficiency and accuracy.

C. Comparison with State-of-the-arts

1) Quantitative Results: We compared the performance
of the proposed DiffBulk framework with several state-of-
the-art approaches, including six task-specific models (ST-
Net [12], DeepSpaCE [13], HisToGene [14], BLEEP [20]),
LOKI [51] and STPath [52], three pathology foundation
models (PLIP [18], UNI [16], and Gigapath [17]), as well
as their fine-tuned variants. To assess the statistical signifi-
cance, we further conducted paired one-sided t-tests under the
same 3-fold slide-level split, comparing DiffBulk against each
baseline. The quantitative results on the HEST-Bowel, HEST-
Pancreas, and CrunchDAO-Bowel datasets are summarized in
Table I.

As shown in Table I, DiffBulk consistently outperformed
both task-specific and FM-based approaches across all three
datasets. In the all-gene prediction setting, DiffBulk improved
PCC by approximately 3%–5% on the HEST-Bowel and
HEST-Pancreas datasets compared to FMs, and by 4%–6%
compared to task-specific models. On the CrunchDAO-Bowel
dataset, the gains were relatively modest, with PCC im-
provements of 1% over FMs and 3%–5% over task-specific
methods. The corresponding statistical test results indicate that
the performance improvements on HEST-Bowel and HEST-
Pancreas are statistically significant, whereas the differences
observed on CrunchDAO-Bowel are generally not significant.
To further understand this smaller performance margin, we
analyzed the statistical characteristics of the target gene ex-
pression profiles across datasets. Specifically, we computed the
per-gene variance across all tiles within each dataset and ob-
served that the CrunchDAO-Bowel dataset displays markedly
lower expression variability. This indicates that a large pro-
portion of genes in this dataset exhibit minimal variation
across tiles, rendering the prediction task inherently easier and
substantially less informative. Under such low-variance condi-
tions, even simple baselines can approach optimal performance
by approximating dataset-level mean expression values, thus
leaving limited room for further improvement. Despite this
ceiling effect, DiffBulk still achieves consistently lower MAE
and MSE and higher PCC, demonstrating strong robustness
and generalization.

Overall, DiffBulk effectively bridges the gap between task-
specific models and large-scale foundation models. While FMs
provide strong generic visual priors, they lack gene-aware in-
ductive bias. Conversely, Task-specific models capture domain
knowledge but struggle with cross-dataset scalability. DiffBulk
overcomes these limitations by introducing a gene-to-image
conditional diffusion pretraining strategy and a permutation-
invariant open-embedding gene encoder. This design not only
preserves the structural properties of gene expression data
but also enables flexible integration of diverse gene sets,

alleviating the scalability bottlenecks of existing models. As
a result, DiffBulk generalizes more effectively across diverse
datasets and consistently outperforms prior methods in gene
expression prediction.

2) Qualitive Results: We visualize the prediction results
for the CD24 gene in Figure 2, as CD24 plays a critical
role in intestinal biology. Its expression has been linked to
tumorigenesis and immune responses in colorectal cancer [53],
making it a gene of considerable interest. Compared to other
methods, DiffBulk more accurately identifies regions of high
CD24 expression. In Figure 3, we further cluster tissue spots
on an unseen bowel WSI based on their predicted gene ex-
pression profiles. The left panel includes partial expert annota-
tions delineating key anatomical structures. Notably, DiffBulk
effectively distinguishes regions such as the lamina propria
(LP, blue) and muscularis propria (MP, orange), outperform-
ing baselines like BLEEP and PLIP, and even compensating
for gaps in the human-provided annotations. By delineating
these structures solely from predicted transcriptomic profiles,
DiffBulk demonstrates strong potential for automated tissue
segmentation, offering a path toward reduced manual workload
in histopathological analysis.

D. Effectiveness of Key Components

To thoroughly evaluate the effectiveness of each component
in the DiffBulk framework, we perform a series of ablation
studies. Unless otherwise stated, all ablated variants are trained
on a single fold of the HEST-Bowel dataset and evaluated on
the corresponding held-out test set. We compare four config-
urations: (1) training a U-Net from scratch and combining it
with a PLIP [18] branch as a baseline; (2) replacing the U-Net
with our pretrained gene-to-image diffusion model and using
the proposed open-embedding gene encoder; (3) adding the
Probabilistic Masking Switch (PMS) with masking probability
p = 0.5 during diffusion pretraining; (4) injecting low-level
Gaussian noise (σ = 0.01) during the downstream stage.

As shown in Table II, the U-Net trained from scratch
achieved 1.070 MAE, 1.905 MSE, and 0.411 PCC. When
initializing the U-Net with weights obtained from the gene-to-
image diffusion training stage, the model achieved improved
performance across all three metrics, with MAE and MSE
reduced by 17% to 30% and PCC increased by 2.4%, reaching
0.898 MAE, 1.603 MSE, and 0.435 PCC. Incorporating the
PMS module led to further improvements, resulting in 0.875
MAE, 1.583 MSE, and 0.442 PCC. Furthermore, injecting
low-level noise during the downstream training phase yielded
the best performance, with 0.864 MAE, 1.551 MSE, and 0.458
PCC.

E. Effectiveness of the Open-Embedding Gene Encoder

To assess the gene encoder in DiffBulk, we design a 3-
layer MLP-based counterpart. Specifically, in the gene-to-
image diffusion training stage, both encoders are trained under
identical settings for fair comparison. As shown in Table III,
the open-embedding gene encoder consistently achieves better
performance than the MLP-based counterpart, owing to its
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TABLE I
QUANTITATIVE COMPARISON WITH OTHER METHODS (MEAN ± STD OVER THE SAME 3-FOLD SLIDE-LEVEL SPLIT). † INDICATES THE FINE-TUNED

VARIANT OF EACH FOUNDATION MODEL. THE BEST PERFORMANCE FOR EACH SETTING IS HIGHLIGHTED IN BOLD. STATISTICAL SIGNIFICANCE OF

OURS OVER EACH BASELINE IS ANNOTATED BY PAIRED ONE-SIDED t-TESTS (H0 : NO DIFFERENCE; H1 : OURS IS BETTER) USING FOLD-LEVEL

SCORES: ∗p < 0.1, ∗∗p < 0.05.

Dataset Image Encoder
TOP-100 TOP-200 ALL

MAE ↓ MSE ↓ PCC ↑ MAE ↓ MSE ↓ PCC ↑ MAE ↓ MSE ↓ PCC ↑

HEST-Bowel

ST-Net [12] 1.935∗∗ ± 0.447 5.311∗∗ ± 2.401 0.328∗∗ ± 0.019 1.373∗∗ ± 0.244 2.971∗∗ ± 1.072 0.464∗∗ ± 0.075 1.114∗ ± 0.146 2.418∗∗ ± 0.599 0.400∗∗ ± 0.064
DeepSpaCE [13] 1.536∗∗ ± 0.215 3.704∗∗ ± 0.934 0.391∗∗ ± 0.037 1.310∗ ± 0.103 2.733∗ ± 0.394 0.460∗∗ ± 0.035 1.128∗ ± 0.113 2.482∗∗ ± 0.435 0.400∗∗ ± 0.038
HisToGene [14] 2.004∗∗ ± 0.259 5.270∗∗ ± 0.479 0.311∗∗ ± 0.032 1.381∗ ± 0.152 3.043∗ ± 1.140 0.431∗∗ ± 0.023 1.243∗∗ ± 0.141 2.272∗ ± 0.521 0.382∗∗ ± 0.052

BLEEP [20] 1.548∗ ± 0.272 4.047∗∗ ± 1.128 0.366∗∗ ± 0.130 1.589∗∗ ± 0.477 4.128∗∗ ± 2.247 0.366∗∗ ± 0.143 1.162∗ ± 0.088 2.579∗ ± 0.317 0.396∗∗ ± 0.015
Loki [51] 1.523∗ ± 0.235 3.810∗ ± 1.312 0.404∗∗ ± 0.042 1.406∗∗ ± 0.181 8.608∗∗ ± 1.084 0.150∗∗ ± 0.099 1.070 ± 0.188 2.324 ± 0.413 0.402∗∗ ± 0.088

STPath [52] 1.493∗ ± 0.129 3.406∗ ± 0.744 0.417∗ ± 0.056 1.298 ± 0.174 2.705 ± 0.734 0.495 ± 0.046 1.074 ± 0.044 2.225 ± 0.574 0.422∗ ± 0.057

PLIP [18] 1.492∗ ± 0.124 3.465∗ ± 0.562 0.408∗∗ ± 0.015 1.283 ± 0.073 2.596 ± 0.331 0.465∗ ± 0.040 1.060 ± 0.183 2.215∗ ± 0.596 0.412∗ ± 0.017
PLIP† [18] 1.793∗∗ ± 0.209 4.406∗∗ ± 1.164 0.370∗∗ ± 0.071 1.308 ± 0.403 2.747 ± 1.374 0.494 ± 0.251 1.097 ± 0.099 2.271 ± 0.511 0.382∗∗ ± 0.034
UNI [16] 1.646∗∗ ± 0.077 3.945∗∗ ± 0.296 0.334∗∗ ± 0.063 1.385∗ ± 0.083 2.905∗ ± 0.268 0.416∗∗ ± 0.076 1.091∗ ± 0.151 2.285∗ ± 0.582 0.403∗∗ ± 0.003
UNI† [16] 1.609∗∗ ± 0.318 3.945∗∗ ± 1.427 0.336∗∗ ± 0.073 1.547∗∗ ± 0.412 3.728∗∗ ± 1.958 0.400∗∗ ± 0.086 1.158∗ ± 0.040 2.549∗ ± 0.507 0.427∗ ± 0.074

Gigapath [17] 1.696∗∗ ± 0.179 4.072∗∗ ± 0.702 0.358∗∗ ± 0.024 1.432∗ ± 0.162 3.031∗ ± 0.562 0.430∗∗ ± 0.062 1.080∗ ± 0.139 2.218∗ ± 0.544 0.420∗ ± 0.013
Gigapath† [17] 1.591∗∗ ± 0.191 3.981∗∗ ± 0.826 0.403∗∗ ± 0.038 1.334∗ ± 0.174 2.753 ± 0.670 0.481∗ ± 0.051 1.120∗ ± 0.090 2.367∗∗ ± 0.384 0.424∗ ± 0.031

Ours 1.478 ± 0.259 3.366 ± 1.105 0.462 ± 0.067 1.308 ± 0.243 2.698 ± 0.934 0.501 ± 0.071 1.049 ± 0.156 2.182 ± 0.507 0.435 ± 0.002

HEST-Pancreas

ST-Net [12] 1.635∗∗ ± 0.147 4.043∗∗ ± 0.298 0.226∗∗ ± 0.126 1.357∗∗ ± 0.125 2.894∗∗ ± 0.294 0.331∗∗ ± 0.088 0.795∗∗ ± 0.107 1.359∗∗ ± 0.205 0.641∗∗ ± 0.059
DeepSpaCE [13] 1.568∗∗ ± 0.201 3.659∗∗ ± 0.572 0.245∗∗ ± 0.097 1.324∗∗ ± 0.162 2.704∗∗ ± 0.445 0.330∗∗ ± 0.082 0.780∗∗ ± 0.132 1.313∗∗ ± 0.280 0.652∗∗ ± 0.060
HisToGene [14] 1.644∗∗ ± 0.321 4.019∗∗ ± 0.255 0.233∗∗ ± 0.120 1.359∗∗ ± 0.138 2.764∗∗ ± 0.323 0.332∗∗ ± 0.062 0.803∗∗ ± 0.153 1.329∗∗ ± 0.216 0.643∗∗ ± 0.049

BLEEP [20] 1.633∗∗ ± 0.098 4.143∗∗ ± 0.281 0.183∗∗ ± 0.080 1.366∗∗ ± 0.107 3.012∗∗ ± 0.321 0.317∗∗ ± 0.055 0.805∗∗ ± 0.087 1.396∗∗ ± 0.148 0.651∗∗ ± 0.063
Loki [51] 1.613∗∗ ± 0.699 3.810∗∗ ± 4.585 0.224∗∗ ± 0.065 1.360∗∗ ± 0.367 3.033∗∗ ± 1.034 0.313∗∗ ± 0.063 0.854∗∗ ± 0.346 1.516∗∗ ± 1.515 0.620∗∗ ± 0.060

STPath [52] 1.553∗∗ ± 0.268 3.403∗∗ ± 0.946 0.282∗∗ ± 0.086 1.363∗∗ ± 0.264 2.934∗∗ ± 1.046 0.337∗∗ ± 0.251 0.803∗∗ ± 0.163 1.371∗∗ ± 0.473 0.662∗∗ ± 0.027

PLIP [18] 1.618∗∗ ± 0.309 3.862∗∗ ± 1.126 0.260∗∗ ± 0.075 1.364∗∗ ± 0.248 2.832∗∗ ± 0.813 0.350∗∗ ± 0.061 0.801∗∗ ± 0.173 1.364∗∗ ± 0.442 0.658∗∗ ± 0.041
PLIP† [18] 1.921∗∗ ± 0.544 4.168∗∗ ± 2.409 0.203∗∗ ± 0.142 1.497∗∗ ± 0.485 3.400∗∗ ± 1.875 0.303∗∗ ± 0.154 0.875∗∗ ± 0.251 1.545∗∗ ± 0.872 0.609∗∗ ± 0.068
UNI [16] 1.702∗∗ ± 0.392 4.275∗∗ ± 1.551 0.211∗∗ ± 0.078 1.433∗∗ ± 0.303 3.142∗∗ ± 1.097 0.305∗∗ ± 0.072 0.849∗∗ ± 0.188 1.496∗∗ ± 0.546 0.622∗∗ ± 0.037
UNI† [16] 1.641∗∗ ± 0.293 4.056∗∗ ± 1.109 0.199∗∗ ± 0.075 1.439∗∗ ± 0.168 3.226∗∗ ± 0.555 0.302∗∗ ± 0.066 0.868∗∗ ± 0.096 1.528∗∗ ± 0.238 0.607∗∗ ± 0.050

Gigapath [17] 1.588∗∗ ± 0.294 3.694∗∗ ± 0.934 0.242∗∗ ± 0.110 1.334∗∗ ± 0.228 2.705∗∗ ± 0.692 0.343∗∗ ± 0.083 0.818∗∗ ± 0.155 1.347∗∗ ± 0.391 0.643∗∗ ± 0.062
Gigapath† [17] 1.617∗∗ ± 0.117 3.987∗∗ ± 0.293 0.201∗∗ ± 0.117 1.374∗∗ ± 0.044 3.011∗∗ ± 0.034 0.309∗∗ ± 0.102 0.840∗∗ ± 0.120 1.517∗∗ ± 0.300 0.615∗∗ ± 0.035

Ours 1.471 ± 0.220 3.094 ± 0.731 0.315 ± 0.110 1.249 ± 0.136 2.390 ± 0.333 0.404 ± 0.083 0.759 ± 0.130 1.158 ± 0.293 0.701 ± 0.043

CrunchDAO-Bowel

ST-Net [12] 0.240∗∗ ± 0.015 0.098∗∗ ± 0.011 0.659∗∗ ± 0.039 0.210∗∗ ± 0.014 0.079 ± 0.009 0.654∗∗ ± 0.035 0.146∗ ± 0.011 0.049∗ ± 0.006 0.661∗∗ ± 0.030
DeepSpaCE [13] 0.252∗∗ ± 0.015 0.106∗∗ ± 0.012 0.622∗∗ ± 0.041 0.214∗ ± 0.015 0.083 ± 0.009 0.631∗∗ ± 0.038 0.138 ± 0.010 0.049∗ ± 0.006 0.663∗∗ ± 0.026
HisToGene [14] 0.263∗∗ ± 0.023 0.113∗ ± 0.014 0.587∗∗ ± 0.056 0.233∗∗ ± 0.010 0.091 ± 0.009 0.582∗∗ ± 0.029 0.156∗∗ ± 0.008 0.054∗ ± 0.005 0.613∗∗ ± 0.022

BLEEP [20] 0.228 ± 0.018 0.101 ± 0.013 0.661∗∗ ± 0.041 0.196 ± 0.020 0.081 ± 0.013 0.658∗∗ ± 0.037 0.124 ± 0.011 0.046∗∗ ± 0.005 0.692 ± 0.027
Loki [51] 0.231 ± 0.015 0.094 ± 0.015 0.690 ± 0.034 0.201 ± 0.012 0.074 ± 0.010 0.692 ± 0.025 0.139 ± 0.008 0.045 ± 0.006 0.691 ± 0.010

STPath [52] 0.223 ± 0.019 0.089 ± 0.008 0.700 ± 0.062 0.200 ± 0.015 0.074 ± 0.012 0.694 ± 0.031 0.133 ± 0.011 0.044 ± 0.004 0.707 ± 0.023

PLIP [18] 0.231 ± 0.013 0.092 ± 0.010 0.683 ± 0.037 0.201 ± 0.013 0.073 ± 0.009 0.683 ± 0.034 0.132 ± 0.009 0.043 ± 0.006 0.704 ± 0.027
PLIP† [18] 0.231 ± 0.015 0.090 ± 0.011 0.699 ± 0.036 0.195 ± 0.013 0.072 ± 0.007 0.698 ± 0.027 0.131 ± 0.010 0.043 ± 0.004 0.711 ± 0.020
UNI [16] 0.228 ± 0.011 0.089 ± 0.007 0.701 ± 0.028 0.200 ± 0.012 0.071 ± 0.008 0.699 ± 0.027 0.138 ± 0.009 0.043 ± 0.005 0.710 ± 0.024
UNI† [16] 0.223 ± 0.016 0.091 ± 0.011 0.700 ± 0.030 0.199 ± 0.017 0.078 ± 0.010 0.677 ± 0.033 0.135 ± 0.014 0.047 ± 0.007 0.686 ± 0.041

Gigapath [17] 0.229 ± 0.011 0.090 ± 0.007 0.696 ± 0.026 0.202 ± 0.011 0.073 ± 0.006 0.689 ± 0.028 0.141 ± 0.009 0.044 ± 0.004 0.703 ± 0.024
Gigapath† [17] 0.225 ± 0.009 0.090 ± 0.005 0.700 ± 0.011 0.196 ± 0.011 0.072 ± 0.006 0.700 ± 0.025 0.140 ± 0.011 0.047 ± 0.004 0.707 ± 0.022

Ours 0.223 ± 0.014 0.087 ± 0.009 0.701 ± 0.028 0.193 ± 0.015 0.071 ± 0.008 0.701 ± 0.028 0.129 ± 0.011 0.042 ± 0.005 0.715 ± 0.026

Xenium BLEEPDiffBulk HisToGenePLIP

Fig. 2. Spatial expression profile of the gene CD24 in a human bowel tissue section. Each dot corresponds to a ST capture spot, color-coded by
the normalized expression level of CD24 (purple: low, yellow: high).

ability to preserve the permutation-invariance property of gene
modality.

To further address potential bias caused by limited data
scale, we additionally train an MLP-based (multiple datasets)
variant, where the input dimension is defined as the union
of all genes across datasets and the missing genes for each
dataset are zero-padded. This variant slightly improves over
the single-dataset MLP baseline (MAE: 0.927 → 0.909, PCC:

0.434 → 0.442), suggesting that access to larger and more
diverse data indeed benefits conventional MLPs. However,
it still falls short of our proposed open-embedding encoder,
which achieves 0.864 MAE and 0.458 PCC when trained
jointly on all datasets.

These results highlight that although increasing the data
scale benefits conventional MLPs, its lack of permutation
invariance limits its ability to effectively model heterogeneous
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Annotations DiffBulk BLEEP PLIP

Fig. 3. Visualization of tissue architecture based on gene expression clustering. The left panel shows manual annotations by a pathologist, while
the remaining panels display unsupervised clustering results derived from gene expression similarity.

TABLE II
QUANTITATIVE RESULTS OF THE ABLATION STUDY ANALYZING THE

IMPACT OF DIFFERENT COMPONENTS IN OUR FRAMEWORK.

Configuration MAE ↓ MSE ↓ PCC ↑
Baseline (only the second stage) 1.070 1.905 0.411
+ Diffusion Pretraining 0.898 1.603 0.435
+ Diffusion Pretraining + PMS 0.875 1.583 0.442
+ Diffusion Pretraining + PMS + Noise 0.864 1.551 0.458

TABLE III
ABLATION RESULTS COMPARING DIFFERENT GENE ENCODER

ARCHITECTURES.

Gene Encoder MAE ↓ MSE ↓ PCC ↑
MLP-based (single dataset) 0.927 1.737 0.434
MLP-based (multiple datasets) 0.909 1.626 0.442
Open-Embedding (single dataset) 0.912 1.663 0.457
Open-Embedding (multiple datasets) 0.864 1.551 0.458

gene panels. In contrast, our open-embedding gene encoder is
explicitly designed to handle variable gene sets and preserve
permutation invariance property of gene expression data, en-
abling it to capture meaningful cross-gene relationships. This
demonstrates that the performance improvement stems from
the model design itself, rather than merely from increased data
scale, thereby validating the robustness and necessity of the
proposed open-embedding gene encoder.

We further investigate the impact of the number of encoder
blocks in the open-embedding gene encoder. As shown in
Table IV, increasing the number of transformer blocks con-
sistently improves performance across all metrics, particularly
from one to two blocks (MAE: 0.984 → 0.864, PCC: 0.422
→ 0.458). When further increasing to four blocks, the perfor-
mance gain becomes marginal (MAE: 0.864 → 0.841, PCC:
0.458 → 0.467), suggesting that the model begins to saturate
and additional depth offers diminishing returns. This observa-
tion confirms that our current two-block configuration provides
an effective trade-off between representational capacity and
generalization. It demonstrates that the encoder is well-aligned
with the available data scale and not underutilized.

F. Effectiveness of Different Layers in U-Net
Different layers of the pretrained U-Net capture features

at varying levels of abstraction, and these representations can
have a significant impact on the downstream pseudo-bulk gene
expression prediction. To identify the most effective part for

TABLE IV
EFFECT OF THE NUMBER OF ENCODER BLOCKS IN THE

OPEN-EMBEDDING GENE ENCODER.

# of Blocks MAE ↓ MSE ↓ PCC ↑
1 0.984 1.893 0.422
2 0.864 1.551 0.458
4 0.841 1.469 0.467

TABLE V
ABLATION STUDY ON DIFFERENT LAYERS IN U-NET.

Layers MAE ↓ MSE ↓ PCC ↑
All 0.880 1.602 0.435
Encoder 0.880 1.596 0.433
Decoder 0.864 1.551 0.458

this task, we evaluate three configurations: using activations
from (1) the encoder only, (2) the decoder only, and (3) the
entire U-Net.

The U-Net encoder progressively downsamples the input
to capture local texture, morphology, and mid-level patterns,
while the decoder upsamples from low resolution, aggregating
global context and high-level information via skip connections.
As shown in Table V, the decoder-only branch outperforms
both encoder-only and full U-Net, which we attribute to its
favorable balance of semantic richness and spatial resolution:
during gene-conditional diffusion training the decoder is di-
rectly optimized to reconstruct noise-free images conditioned
on gene expression, so gene-relevant semantics become more
explicitly embedded, whereas the encoder tends to emphasize
local visual cues and the full U-Net can introduce redundant
or noisy signals that dilute those gene-specific features. The
skip connections further help the decoder fuse low- and high-
level information, enhancing its ability to represent spatially
distributed expression patterns. These findings underscore that
selecting feature layers with strong semantic alignment to
the downstream task improves the effectiveness of pretrained
diffusion models.

G. Effectiveness of the Probability p in PMS

We investigate the impact of the probability p in gene-to-
image conditional diffusion training. We examine three repre-
sentative values of p. When p = 0, the U-Net is conditioned
on gene expression, following a fully conditional training
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TABLE VI
ABLATION STUDY ON THE PROBABILITY p IN PMS AND THE NOISE

LEVEL σ.

p σ MAE ↓ MSE ↓ PCC ↑
0.5 1.000 0.929 1.741 0.456
0.5 0.100 0.875 1.611 0.456
0.5 0.015 0.870 1.570 0.455
0.5 0.010 0.864 1.551 0.458
0.5 0.001 0.873 1.565 0.458
0.5 0.000 0.875 1.582 0.449

0.0 0.010 0.888 1.616 0.450
1.0 0.010 0.895 1.662 0.445

regime. When p = 1, the U-Net is never conditioned on
gene expression, reducing the training to a standard diffusion
process. The intermediate setting p = 0.5 randomly conditions
the U-Net on gene expression in 50% of the training steps.

As shown in Table VI, the best performance is achieved
when p = 0.5. This balanced configuration enables the model
to remain responsive to gene-specific guidance while also
learning to operate in gene-agnostic settings in downstream
tasks. In contrast, setting p = 0 leads the model to over-rely on
gene inputs during pretraining, degrading performance when
gene data is absent at inference. On the other hand, p = 1
removes all gene guidance, preventing the model from learning
gene-relevant features. These findings suggest that p = 0.5
effectively strikes an effective trade-off, enabling the model to
develop robust and transferable representations.

H. Influence of Different Noise Levels
We observed that our framework achieves better perfor-

mance when low-level noise N (0, σ2I) is added to pathology
images during the downstream stage. We conducted experi-
ments with varying levels of noise intensity σ. As shown in
Table VI, the model performs optimally when σ lies within
the range 0 < σ ≤ 0.01. This performance gain can be
attributed to the nature of the conditional diffusion training,
where the U-Net is optimized to reconstruct clean signals from
noisy inputs. Since the pretrained U-Net is rarely exposed to
noise-free histological images during training, introducing a
moderate level of noise at the representation learning stage
creates a consistent training distribution that aligns with its
denoising objective. However, when the noise level becomes
too high (i.e., σ > 0.01), the injected perturbations start
to obscure critical histological features necessary for gene
expression prediction. These findings highlight the importance
of carefully tuning the noise level to match the denoising
nature of the conditional diffusion process while preserving
the fidelity of informative image features.

I. Effectiveness of the Foundation Model Branch
We first ablate the FM branch to assess the standalone

effectiveness of the conditional diffusion-based image features
for gene expression prediction. As shown in Table VII, Diffu-
sion(alone) refers to the model that utilizes only the diffusion-
based features. Notably, this model achieves performance

TABLE VII
ABLATION STUDY ON THE FOUNDATION MODEL BRANCH. BLUE

NUMBERS DENOTE THE IMPROVEMENT OF EACH COMBINED MODEL

COMPARED TO ITS CORRESPONDING FM-ALONE BASELINE.

Model MAE ↓ MSE ↓ PCC ↑
BLEEP 1.067 2.228 0.414
Diffusion (alone) 0.964 1.718 0.433

Gigapath+Diffusion 1.115-0.129 1.962-0.217 0.416+0.031

PLIP+Diffusion 1.135-0.271 1.938-0.387 0.433+0.025

UNI+Diffusion 1.146-0.158 2.020-0.240 0.407+0.036

UNI2+Diffusion 1.092-0.174 1.773-0.162 0.431+0.031

Virchow2+Diffusion 1.169-0.183 2.022-0.211 0.401+0.038

H-optimus+Diffusion 1.212-0.186 1.801-0.151 0.418+0.048

comparable to BLEEP, which validates the effectiveness of
our gene-to-image conditional diffusion training framework
and open-embedding gene encoder. This demonstrates that the
pretrained U-Net can extract gene-relevant visual representa-
tions without the help of additional pretrained FM encoders.

To further investigate whether incorporating an additional
FM branch can enhance performance, we combine diffusion-
based features with a variety of FM backbones, including
PLIP, UNI, Gigapath, Virchow 2 [54], H-optimus [55], and
UNI-2 [56]). Each +Diffusion variant corresponds to a com-
bination of diffusion features with a specific FM backbone.
Across all FM backbones, integrating diffusion-based features
consistently improves performance compared with their FM-
alone counterparts, as highlighted by the blue numbers in Ta-
ble VII. This demonstrates that the gene-specific priors learned
through conditional diffusion training provide complementary
information to foundation model embeddings, regardless of the
FM’s scale or training paradigm.

Interestingly, the magnitude of improvement varies with
the FM choice. Among models, PLIP+Diffusion achieves
the largest gain, which we attribute to PLIP’s multimodal
contrastive pretraining that aligns histology–text pairs and
thus benefits from the diffusion branch’s gene-conditioned
visual cues. For stronger FMs such as UNI-2, Virchow2,
and H-optimus, the diffusion-enhanced variants still achieve
noticeable improvements (+0.031–0.048 in PCC), indicating
that even highly expressive visual encoders can benefit from
the biologically grounded structure provided by the diffusion
pretraining. This confirms the generality and compatibility of
DiffBulk with next-generation pathology foundation models,
highlighting its potential to enhance existing FMs through
gene-aware structural conditioning.

V. DISCUSSION AND CONCLUSION

Predicting gene expression from histopathological images
offers a cost-effective alternative to ST, which remains expen-
sive and labor-intensive. However, existing approaches typi-
cally cast this task as a direct regression problem, ignoring its
inherently ill-posed nature and relying heavily on MLP-based
gene encoders that are limited in scalability and violate permu-
tation invariance. These constraints often result in suboptimal
performance. To address these challenges, we employ a gene-
to-image conditional diffusion model to implicitly model the
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complex relationship between gene expression profiles and his-
tological features. Our design introduces an open-embedding
gene encoder that respects the permutation-invariant structure
of gene data and supports flexible integration across hetero-
geneous gene sets. To ensure the utility of learned diffu-
sion representations during downstream prediction, we further
introduce a PMS module. Although the diffusion model is
capable of generating pathological image patches conditioned
on gene expression, we emphasize that image synthesis fidelity
is not the primary objective of DiffBulk; rather, the diffusion
process is leveraged as a powerful pretraining mechanism to
encode subtle gene-dependent morphological cues into image-
perceptual representations.

In the downstream stage, we extract multi-scale features
from the frozen conditional diffusion model and integrate them
with features from a FM via a gated fusion module. We further
experiment with alternative fusion mechanisms, including (1)
a learnable additive fusion defined as z = cadd · zfm + (1 −
cadd) · zdiff, and (2) a concatenation-based fusion defined as
z = Concat(zfm, cconcat · zdiff), where cadd and cconcat are
learned scalars. Although these variants underperform com-
pared to our gated design, the learned weights (cadd = 0.7088,
cconcat = 0.7348) indicate that FM-based features currently
dominate prediction, highlighting the need for more discrim-
inative and expressive diffusion-based representations. This
insight highlights a promising direction for future research:
the development of stronger conditional pretraining objectives
and more powerful diffusion-based feature extractors.

While DiffBulk demonstrates strong predictive performance
and generalizability across multiple datasets, several limi-
tations remain. First, DiffBulk is designed as a two-stage
framework rather than a fully end-to-end architecture. It may
limit the joint fine-tuning of gene-conditional and predictive
modules. In future work, an end-to-end optimization scheme
could be explored to further improve representation alignment
and reduce training complexity.

Second, the introduction of the diffusion module inevitably
increases computational cost. The diffusion U-Net adds more
parameters and FLOPs compared with task-specific baselines,
leading to higher training time and GPU memory consump-
tion. Although the diffusion backbone is frozen during in-
ference—mitigating runtime overhead—this additional cost
may hinder large-scale deployment or real-time applications.
Designing lightweight diffusion architectures or knowledge
distillation strategies could help alleviate this issue.

In conclusion, DiffBulk introduces a principled and extensi-
ble framework for learning gene-aware image representations
via conditional diffusion modeling. Our permutation-invariant,
open-embedding gene encoder enables scalable pretraining
across diverse ST datasets, while our gated fusion design effec-
tively combines complementary information from foundation
models. Extensive evaluations on three Xenium ST datasets
demonstrate the robustness, generalizability, and performance
superiority of DiffBulk over existing methods. Beyond gene
expression prediction, our framework opens up new possibil-
ities for integrating generative pretraining into spatial omics
analysis and computational pathology.
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