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PathRWKV: Enhancing Whole Slide Image
Inference with Asymmetric Recurrent Modeling

Tianyi Zhang, Sicheng Chen, Borui Kang, Dankai Liao, Qiaochu Xue, Bochong Zhang,
Fei Xia, Zeyu Liu, and Yueming Jin

Abstract— Whole Slide Imaging (WSI) has become a gold
standard in cancer diagnosis, inspecting multi-scale infor-
mation from cellular to tissue levels. Processing an entire
WSI directly is infeasible due to GPU memory constraints;
thus, Multiple Instance Learning (MIL) has emerged as the
standard solution by partitioning WSIs into tiles. While
recent two-stage MIL frameworks partially achieve memory
efficiency by decoupling tile-level extraction from slide-
level modeling, they still face four core limitations: (1) the
conflict between training throughput and inference memory
efficiency, (2) the high susceptibility to overfitting on small-
scale WSI datasets with sparse supervision, (3) the disrup-
tion of spatial structural integrity during sampling-based
training, and (4) the inadequate modeling of multi-scale
feature interactions within long sequences. We therefore
introduce PathRWKV, a novel State Space Model designed
for efficient and robust WSI analysis. To resolve the com-
putational trade-off, we propose an asymmetric structure
utilizing max pooling aggregation, enabling parallelized
training for high throughput and recurrent inference with
constant (O(1)) memory complexity. To mitigate overfit-
ting, we employ the random sampling strategy to enhance
data diversity, with a multi-task learning module to regu-
larize feature learning on limited data. To restore spatial
context, we introduce 2D sinusoidal position encoding to
perceive the relative locations of tissue tiles. To capture
comprehensive representations, we integrate TimeMix and
ChannelMix modules, enabling dynamic multi-scale feature
modeling across both temporal and spatial dimensions. Ex-
periments on 29,073 WSIs across 11 datasets demonstrate
that PathRWKV outperforms 11 state-of-the-art methods
on 10 datasets, establishing it as a superior solution for
clinical-grade pathological inference.

Index Terms— Whole slide image analysis, multiple in-
stance learning, multi-task learning, state space model.
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I. INTRODUCTION

PATHOLOGY diagnosis plays an essential role in clini-
cal practice, leveraging the analysis of pathological im-

ages [1], [2] to ensure accurate cancer diagnosis and treatment
planning. The process begins with tissue biopsy/grossing by
a specialist, and sample preparation workflows digitize these
samples. This creates gigapixel-scale Whole Slide Images
(WSIs) capturing both cell-level and tissue-level morpholog-
ical details [2]. While WSIs contain rich, high-dimensional,
multi-scale features, their colossal sizes make manual review
labor-intensive and require highly specialized expertise, lead-
ing to inconsistent diagnoses across sites that could negatively
impact the quality of healthcare [3], [4]. Deep learning–
driven computational pathology techniques have emerged to
ease pathologists’ burden and promote high-quality diagnosis
by automatically identifying critical patterns in WSIs [5]–
[7]. Recent studies have further advanced this by quantify-
ing pathologists’ visual patterns to integrate expert cognitive
strategies into diagnostic models, thereby aiming to minimize
workload while maintaining precision [8]. Nevertheless, the
complex, multi-scale nature of WSIs sets challenges for deep
learning models to capture and integrate features robustly
across different scales [9], [10].

Specifically, end-to-end training on raw, high-resolution
WSIs remains infeasible due to GPU memory constraints and
extreme dimensionality [5], [7]. Some studies downsample
WSI to a thumbnail, while reduce computational complexity,
this incurs significant information loss by discarding high-
resolution details (e.g., cell morphology) critical for assessing
disease progression [11], [12]. Consequently, most pipelines
predominantly adopt Multiple Instance Learning (MIL) as
a practical two-stage solution [13]. This approach breaks
WSIs into smaller tiles (e.g., 224 × 224 pixels from an
80, 000 × 60, 000-pixel slide) and encodes them into dense
feature representations using a foundation model (e.g., Prov-
GigaPath [14]). Subsequently, a slide-level backbone aggre-
gates these compressed tile features to generate slide-level
predictions [6], [15], [16]. This paradigm robustly enhances
performance by enabling the processing of a larger number of
tiles per iteration and leveraging the robust prior knowledge
embedded in the foundation model. Accordingly, these ad-
vantages contribute to the high accuracy achieved by modern
MIL frameworks [8], [17]. However, critical challenges remain
unresolved as detailed below:
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A primary challenge in WSI analysis arises from the drastic
variation in the number of tiles per slide due to diverse tissue
dimensions [17]. During training, a fixed number of tiles
(e.g., 2,000) is uniformly sampled from each WSI to lever-
age a larger batch size. This maximizes GPU parallelization
efficiency, and stabilizes gradient descent, thereby enhancing
overall performance [7]. Conversely, during inference, to cover
all regions for diagnostic evidences, the batch size is generally
set to one to process all available tiles [5]. However, given
the immense disparity in WSI dimensions (e.g., from 1,000 to
over 40,000 tiles in the CAMELYON16 dataset [4] at 0.5 mpp
with a 224×224 patch size), processing large-scale slides can
easily exceed GPU memory limits, particularly when deploy-
ing recent effective yet complex Transformers on resource-
constrained edge devices [18]. This necessitates a slide-level
structure that possesses parallel computing capabilities during
training to handle large batch sizes, while retaining sequential
processing efficiency during inference to model entire WSIs
with minimal memory overhead [19].

Another critical challenge stems from the severe data ineffi-
ciency in WSI analysis, where high-capacity models struggle
to generalize under the dual constraints of data scarcity and
sparse supervision [20], [21]. Specifically, obtaining annotated
cohorts is prohibitive, often restricting datasets to limited
sizes (e.g., fewer than 3,000 slides) [1]. This scarcity is
exacerbated by the weak nature of slide-level labels, which
provide supervision for only a fraction of the gigapixel-
resolution tissue information [5]. Consequently, despite the
improved feature representations from foundation models [7],
[14], the downstream aggregators remain prone to overfitting.
Notably, complex structures like TransMIL [15] frequently
underperform compared to simpler baselines (e.g., CLAM [6])
in such low-data regimes [20]. This necessitates strategies that
maximize the utility of limited slide-level data to enhance
model generalization [22], [23].

Furthermore, the disruption of spatial structural integrity
during sampling-based MIL training significantly impedes
the performance of permutation-variant methods. Conven-
tional mini-batch training requires a fixed input size, and
current methods primarily address this by selecting a subset
of tiles to represent the whole WSI [13]. This inevitably
disrupts the global spatial context. While this issue is negligi-
ble for permutation-invariant Attention-based methods (e.g.,
CLAM [6]), it poses a critical challenge for the current
permutation-variant state-of-the-art (SOTA) paradigms, like
Transformers (e.g., TransMIL [15]) and State Space Models
(SSMs) (e.g., MambaMIL [24]). All of them rely on explicit
modeling of spatial relationships and contextual dependencies.
Consequently, the spatial information loss induced by sam-
pling severely compromises the modeling capabilities of these
structures [25]. It is imperative to develop a mechanism that
can effectively recover this missing spatial context [26].

The final challenge arises as most current methods face
difficulties in adequately handling multi-scale feature inter-
actions within long sequences. Effective diagnosis relies on
the complementarity between fine-grained details (e.g., cell
nuclei at 40×) and coarse-grained context (e.g., tissue structure
at 4×), and the inherent ambiguity of cellular structures

Fig. 1. The asymmetric structure of PathRWKV and its effectiveness.
(a) Parallel mode: The model samples a fixed maximum number of
WSI tiles for multi-sample parallel processing to maintain efficiency
during training. (b) Sequential mode: The model processes all WSI
tiles for precise inference. It splits tiles into equal-sized bags and
processed sequentially in a single forward pass. A memorable state
retains and propagates information from prior bags. (c) GPU memory
usage comparison during inference. PathRWKV maintains the O(1)
spatial complexity, showing superior memory efficiency on long-context
modeling compared with previous methods.

theoretically necessitates fuzzy logic or high-order topological
modeling [27]. This requires a multi-scale modeling capabil-
ity to simultaneously handle the relationships between fine-
grained local homogeneity and coarse-grained global het-
erogeneity [22]. However, existing methods demonstrate an
inability to conduct effective multi-scale feature analysis for
slide-level conclusions. Lightweight Attention-based methods
benefit from simple, permutation-invariant structures but lack
the capacity to capture intricate fine-grained relationships (e.g.,
inter-cell interactions). Conversely, while large Transformers
excel at modeling local details, their generic structures often
struggle to effectively align and fuse these heterogeneous
multi-scale features into a unified slide-level representation.
A promising solution is to model features from multiple
perspectives, incorporating diverse indicators to construct a
robust multi-scale understanding.

Due to the similar requirements of long context modeling
and multi-scale understanding between natural language pro-
cessing (NLP) and MIL, previous MIL approaches based on
NLP structures have proven effective (e.g., TransMIL [15]
from Transformer, MambaMIL [24] from Mamba). Among
them, RWKV [19] stands out by uniquely combining the
efficient parallelizable training of Transformers with the linear
complexity inference of RNNs. This makes it exceptionally
suitable for processing the massive, sequential feature repre-
sentations inherent in WSI analysis. Motivated by these prop-
erties, we propose PathRWKV, a time-decayed SSM tailored
for efficient and robust WSI analysis.

To resolve the asymmetric memory and efficiency con-
straints, we propose an asymmetric structure (Fig. 1) that
integrates max pooling aggregation with linear attention. This
design enables a seamless transition between Transformer-
like parallelization for high-throughput training and RNN-like
sequential processing for inference, achieving constant (O(1))
memory complexity regardless of slide size. Consequently,
it achieves high throughput during training while ensuring
exceptional memory efficiency during inference.
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To mitigate overfitting and data scarcity inherent in weak
supervision, we apply the random sampling strategy with the
multi-task learning (MTL) module. Random sampling acts
as a dynamic data augmentation technique, counteracting the
inductive bias of deterministic sampling and exposing the
model to diverse subsets of tissue regions. The MTL module
introduces auxiliary supervision signals to regularize feature
space, preventing the model from memorizing noise in limited
training samples. Together, these strategies exploit the poten-
tial of limited annotations and bolster model generalizability
by capturing intrinsic inter-task dependencies.

To address the disruption of spatial structural integrity
caused by random sampling, we leverage 2D sinusoidal
position encoding (2D PE) to embed unique coordinate-
based information into each tile feature. It is critical for the
permutation-variant PathRWKV to recognize relative positions
and reconstruct spatial relationships. This design effectively
equips the model to preserve global spatial context, bridging
the significant distributional gap between the stochastic bag-
of-tiles input used during training and the ordered, sequential
slide processing required for inference.

To tackle complex multi-scale feature interactions, we in-
corporate TimeMix and ChannelMix modules. The TimeMix
module focuses on capturing long-range spatial dependencies
and local homogeneity across the sequence of tiles, while
the ChannelMix module focus on high-level abstract semantic
patterns. By jointly modeling these dimensions, the structure
ensures a robust representation that encompasses both fine-
grained cellular details and coarse-grained global tissue het-
erogeneity across the entire slide.

This work makes the following contributions:
• We propose PathRWKV, a novel SSM for efficient and

robust slide-level modeling in computational pathology.
• We design an asymmetric slide-level structure that com-

bines max pooling aggregation, enabling efficient par-
allelized training and recurrent inference with constant
(O(1)) memory complexity. Built upon this structure, we
further introduce random sampling strategy and MTL
module to mitigate overfitting under weak supervision
and improve data efficiency and generalization.

• We restore spatial context by incorporating 2D PE, and
enhance multi-scale representation learning via TimeMix
and ChannelMix modules, enabling dynamic interaction
between fine-grained cellular features and coarse-grained
tissue structures.

• We conduct extensive experiments on 29,073 WSIs across
11 public datasets, demonstrating SOTA performance
on 10 datasets. Beyond accuracy, these results validate
PathRWKV as a scalable and trustworthy framework for
clinical-grade inference, establishing a new perspective
where the asymmetry between training and inference
serves as a powerful inductive principle for compu-
tational pathology. The code is publicly available at
https://github.com/Puzzle-Logic/PathRWKV.

II. RELATED WORKS

The two-stage MIL paradigm becomes the mainstream
recently, with the first stage extracts tile-level features, and

the second aggregates them for slide-level predictions. Initial
attempts within this paradigm employed simple aggregation
strategies, such as average pooling (SlideAve) and max pooling
(SlideMax) from MINNs [28], to combine tile features into
a slide-level representation. While computationally efficient,
these methods simply treat all tiles embeddings equally or fo-
cus exclusively on the most salient one, often failing to capture
the complex, fine-grained information required for accurate
diagnosis. To address this limitation, ABMIL [13] introduced
a gated attention mechanism that adaptively weights tiles to
enable instance-level interpretability. This simple yet effective
mechanism has been widely adopted by most modern methods.
Building on this, CLAM [6] imposes instance clustering con-
straints to encourage diverse and discriminative feature learn-
ing, thereby improving model generalization. DSMIL [29] fur-
ther incorporates contrastive learning by combining instance-
and bag-level supervision to better distinguish informative
tiles. To address the challenge of limited data scale, DTFD-
MIL [16] proposes a double-tier feature distillation framework
that utilizes pseudo-bags to virtually expand the training
set, enhancing robustness in small-sample scenarios. Despite
their widespread adoption, these attention-based methods often
struggle to fully capture complex spatial dependencies within
WSIs due to their inherent permutation invariance.

Transformers have been introduced to alleviate the permuta-
tion invariance of attention-based methods and improve global
context modeling. A representative method, TransMIL [15],
employs a Transformer-based structure that explicitly encodes
positional and structural relationships among tiles, enabling
more effective global spatial reasoning. Furthermore, Prov-
GigaPath [14] enhances global information flow through a
dilated attention mechanism, leveraging efficient sequence
modeling structures like LongNet [18] to improve scalability.
Despite these advancements, Transformers still face challenges
regarding overfitting and high memory consumption, espe-
cially when trained on small-scale datasets.

State Space Models (SSMs) have emerged as a compelling
alternative, balancing the efficiency of conventional attention
methods with the long-range modeling capabilities of Trans-
formers. S4MIL [30] introduces the Structured State Space Se-
quence (S4) model to capture long-range dependencies across
tiles. By imposing a structured state representation, it mitigates
the overfitting risks associated with data-hungry Transformers.
Building on this, MambaMIL [24] integrates the selective state
space model, Mamba, into the MIL pipeline, enabling linear
scaling and selective information flow across tiles. Similarly,
MamMIL [31] adapts the Mamba structure to model WSIs as
long sequences, effectively capturing bidirectional contextual
dependencies with minimal computational overhead. These
SSM-based approaches not only offer superior scalability but
also enhance generalization through their inherent inductive
biases, making them particularly well-suited for WSI analysis
on limited datasets. However, most current SSM-based ap-
proaches retain attention-based pooling mechanisms for final
aggregation. This design necessitates storing features from
all tiles, reintroducing an O(N) memory bottleneck during
inference that undermines the inherent linear efficiency of the
SSM backbone.
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III. METHODS

A. Overview of the MIL Pipeline
Fig. 2a illustrates the overall PathRWKV pipeline. Fol-

lowing existing works [32], each WSI S is first loaded
at a target resolution (e.g., 0.5 microns per pixel (mpp))
and partitioned into a non-overlapping grid of tiles {Ti,j}
of size Tsize. To ensure data quality, a two-stage filtering
protocol is employed. First, tiles with tissue coverage below
a predefined threshold (e.g., < 50% of the tile area) are
discarded. Second, tiles with pixel variance falling below a
quantitative cutoff (e.g., V ar(I) < 0.01, where I denotes the
normalized pixel intensity in [0,1]) are removed. This ensures
that only informative tiles are retained for downstream tasks.
After pre-processing and filtering, each tile is embedded into
a dense semantic feature vector (Fig. 2a) using a pathological
foundation model (e.g., Prov-GigaPath [14]). This embedding
process enhances both the training efficiency and performance
of the slide-level MIL. During training, PathRWKV processes
a randomly shuffled subset of tiles to facilitate efficient multi-
slide learning; conversely, during inference, it utilizes the
complete sequential tile sequence from the WSI. Finally, the
slide-level output features from PathRWKV are passed to the
MTL module to generate predictions for each task (e.g., cancer
subtyping, tumor grading, overall survival).

B. The PathRWKV Slide-level Backbone
PathRWKV serves as the backbone for slide-level feature

modeling, consisting of 2 blocks with a hidden dimension of
768, and 12 heads. The input tile features are first combined
with 2D sinusoidal Position Encoding (2D PE) to restore
spatial relationships disrupted during the sampling process.
Subsequently, these features are processed by the PathRWKV
blocks (Fig. 2b). Each block comprises a TimeMix module
and a ChannelMix module, integrated with layer normalization
and residual connections. The TimeMix module dynamically
captures multi-scale inter-tile dependencies via the temporal
dimension, while the ChannelMix module focuses on intra-
tile feature interactions across the channel dimension. Output
features from the final PathRWKV block are aggregated via
max pooling to produce the final slide-level representation.

Fig. 2c illustrates the key mathematical operations within
the TimeMix and ChannelMix modules. The TimeMix module
is specifically designed to capture multi-scale temporal depen-
dencies among tiles. It effectively integrates fine-grained local
interactions via token shifting and interpolation with coarse-
grained global context via time-decayed linear attention, com-
bining the strengths of Transformers [33] and RNNs [34].

To capture short-range, fine-grained dependencies between
adjacent tiles, the module first employs a token-shift mecha-
nism, TimeShift. A shifted version of the input x, denoted as
xlast, is generated using zero-padding:

xlast,t = xt−1, xlast,0 = 0 (1)

The current input x is then mixed with xlast via data-
dependent linear interpolation (ddlerp). Unlike static interpo-
lation, ddlerp dynamically computes the mixing coefficient µ
using a Low-Rank Adaptation (LoRA) mechanism:

δxt = xlast,t − xt

x′
t = xt + δxt ⊙ µx

µt = λ+ tanh(x′
tWA)WB

xddlerp,t = xt + δxt ⊙ µt

(2)

This mechanism allows the model to adaptively aggregate
local information from the immediate predecessor based on the
current context, ensuring that high-frequency local variations
are preserved before global processing.

Following local aggregation, the interpolated features are
projected into five vectors: receptance r, key k, value v, time-
decay w, and gate g. To capture long-range, coarse-grained
dependencies across the entire slide sequence, we employ a
time-decayed linear attention mechanism. Notably, the decay
rate w is modulated by a LoRA projection, allowing for data-
dependent decay speeds that can adaptively focus on relevant
historical context. The global linear attention is computed
efficiently as:

yt = rt ⊙

t−1∑
i=1

 t∏
j=i+1

wj

⊙ kiv
⊤
i + u⊙ ktv

⊤
t

 (3)

Crucially, this formulation can be switched to a recur-
rent structure, which underpins our asymmetric design. By
maintaining a recurrent state St, the model propagates global
context sequentially:

St = wt ⊙ St−1 + ktv
⊤
t

yt = rt ⊙ (St−1 + u⊙ ktv
⊤
t )

(4)

Finally, the output is gated by g and projected by Wo:

y = Wo(GroupNorm(y)⊙ g) (5)

The ChannelMix module focuses on intra-tile feature in-
teractions. Specifically, it employs learnable linear projections
(r, k, v) to blend information across the channel dimension D
for each tile independently. This is coupled with a Squared
ReLU activation:

σ(x) = max(0, x)2 (6)

which induce robust non-linear transformations, enabling the
extraction of complex morphological features within each tile.

C. Asymmetric Structure and Max Pooling Aggregation
As illustrated in Fig. 1, distinct from the standard token-by-

token processing in original RWKV, we propose a novel hybrid
set-by-set recurrent architecture tailored for high-resolution
WSI analysis. While leveraging the mathematical efficiency
of linear attention, our core innovation lies in the asymmetric
formulation of slide-level modeling to resolve the memory
bottlenecks inherent in existing SSMs.

During the training phase, we adopt a set-based parallel
strategy to maximize throughput. Instead of processing tiles
sequentially, the model ingests a fixed number of sampled
tiles as a dense batch. By utilizing a parallel CUDA kernel,
we compute cumulative states and gradients simultaneously.
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Fig. 2. Overview of PathRWKV. a) The pipeline begins with WSI tiling and tile-level feature embedding via Prov-GigaPath, followed by the slide-
level backbone via PathRWKV, which enables multi-task learning for different downstream tasks. b) The PathRWKV block consists of the TimeMix
module, which integrates tile features with previous states from multi-scale using linear attention, and the ChannelMix module, which blends features
via spatial aspect. c) Details of the specific mechanisms employed, including 2D Position Encoding, TimeShift, LoRA, lerp, ddlerp, and WKV Heads.

This design fully exploits the massive parallelism of modern
GPUs, facilitating rapid backpropagation and stable conver-
gence compared to pure recurrent training.

During the inference phase, we introduce a streaming recur-
rent mechanism to achieve constant O(1) spatial complexity. A
critical limitation in previous SSM-MIL methods (e.g., S4MIL,
MambaMIL) is their reliance on Attention-based aggregation,
which necessitates storing all tile features (O(N)) for the final
calculation, causing memory overflows on gigapixel slides. To
overcome this, our architecture decomposes the WSI into se-
quential chunks. A latent state S (of size HeadSize×HeadSize)
acts as a memory carrier, propagating context across chunks
via a recurrent kernel.

Furthermore, a critical bottleneck remains in the aggregation
mechanism of existing frameworks, including recent SSMs.
While SSM backbones theoretically allow constant spatial
complexity (O(1)) during inference, they typically adapt the
Gated Attention mechanism from ABMIL [13] for slide-level
aggregation. This approach necessitates computing a global
Softmax normalization term across all tiles:

αk =
exp(w⊤hk)∑N
i=1 exp(w

⊤hi)
(7)

Consequently, the feature vectors of all N tiles must be
retained in GPU memory to calculate the denominator until
the entire slide is processed, forcing the inference memory
complexity to scale linearly with the slide size (O(N)). This
disrupts the memory efficiency gained by the SSM backbone.

To achieve a fully memory-efficient pipeline, we integrate
the backbone’s sequential processing with a streaming ag-
gregation strategy. We decompose the WSI X into bags
B1,B2, . . . ,BM aligned with the inference chunks, and iden-
tify the feature-wise max operation as the optimal choice due
to its recursive update property. Given the tile encoder ϕθ, we

define the local summary zi and the combination rule as:

zi = g
(
Bi

)
:= max

x∈Bi

ϕθ(x), Comb(a, b) = max(a, b) (8)

We then update the slide-level representation sequentially:

hi = Comb(hi−1, zi), h0 = ∅ (9)

where hi represents the summary of the first i bags. Unlike at-
tention mechanisms, this design decouples memory usage from
sequence length, achieving true O(1) space complexity during
inference. This enables PathRWKV to process arbitrarily large
slides on edge devices while preserving consistency with the
ideal global computation. Comprehensive theoretical analysis,
including proofs for the unbiased nature of the gradients
and memory complexity comparisons, are provided in the
supplementary materials.

D. Random Sampling and 2D Position Encoding

Given the high dimensionality of WSIs and the sparse
supervision signal, models are prone to overfitting. To mitigate
this, we employ the random sampling strategy during training.
Instead of processing the entire slide or a fixed region, we
randomly sample a subset of tiles from the WSI in each
iteration. This approach acts as a strong data augmentation
technique, preventing the model from memorizing specific tile
sequences and enhancing its generalization capabilities.

However, a critical side effect of random sampling is the
disruption of the intrinsic 2D spatial structure and the anatom-
ical adjacency of the tissue microenvironment. This is the
main advantage of recent permutation-variant methods (e.g.,
MmabaMIL [24]) compared to early permutation-invariant
methods (e.g., ABMIL [13]). To compensate for this loss of
spatial context and enable PathRWKV to model geometry-
aware dependencies, we introduce a 2D PE. Formally, let
zi ∈ RD denote the feature embedding of the i-th tile,
and (xi, yi) represent its normalized spatial coordinates. We
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employ sinusoidal functions to map these coordinates into a
continuous embedding space:

PE(p, 2k) = sin
(
p/Ω4k/D

)
PE(p, 2k + 1) = cos

(
p/Ω4k/D

) (10)

where Ω is a scaling factor and p ∈ {xi, yi}. The final spatial
embedding Pi is constructed by concatenating the encodings
of horizontal and vertical coordinates and injected into the tile
features via addition: ẑi = zi+Pi. This ensures that geometric
relationships are restored regardless of the sampling order.

E. Multi-task Learning

Finally, to maximize the utility of limited annotated data and
enhance training efficiency, we incorporate a multi-task learn-
ing (MTL) module. It comprises multiple prediction heads,
allowing the model to learn from diverse clinical objectives si-
multaneously. By leveraging task-wise correlations, the model
extracts more discriminative features, further reducing the risk
of overfitting on the feature distribution of a single task.
We employ Cross-Entropy, Cox proportional hazards, and L1
losses for classification, survival analysis, and regression tasks,
respectively. The total loss is aggregated as Ltotal =

∑T
i=1 Li,

where T represents the number of task heads. Crucially,
gradients are computed only for tasks with available labels,
enabling flexible training on partially annotated datasets.

IV. EXPERIMENT

A. Datasets and Downstream Tasks

We evaluated PathRWKV on 11 datasets across 9 down-
stream tasks covering diverse diagnostic scenarios, as shown
in Fig. 3, to demonstrate its performance and generalizability.
The PANDA [35] dataset with the ISUP Grade task assesses
prostate cancer aggressiveness; CAMELYON16 [4] with the
Breast Metastasis task classifies lymph nodes as normal or
tumorous; IMP-CRS-2024 [36] with the CRC-Tumor task
identifies tumor tissues in colorectal images. The TCGA [37]
datasets cover multiple cancer types and tasks: TCGA-BRCA
with the IHC-HER2 task predicts HER2 receptor status from
H&E-stained slides; TCGA-GBM with the Histological Di-
agnosis task classifies glioblastoma subtypes based on mor-
phology; TCGA-LGG with the Tumor Stage task predicts
the WHO grade of lower-grade gliomas; TCGA-CESC with
the Lymphovascular Involvement task detects the presence
of lymphovascular invasion; TCGA-ESCA with the Cancer
Grade task assesses the histological differentiation grade of
esophageal carcinoma; and TCGA-LIHC, TCGA-BLCA, and
TCGA-LUNG, the combination of TCGA-LUAD and TCGA-
LUSC, with the Overall Survival task predict patient survival
time in months from liver, bladder, and lung tissue morphol-
ogy, respectively.

B. Implementation Details

We use the UnPuzzle framework [32] for preprocessing,
where each WSI is tessellated into 224 × 224 patches at

Fig. 3. Summary of implemented datasets and clinical tasks. The hori-
zontal bars display the number of WSIs for each cohort on a logarithmic
scale, alongside their corresponding prediction targets. This collection
covers a wide spectrum of sample sizes and clinical objectives, ensuring
a comprehensive evaluation of model generalizability.

0.5 mpp and embedded using the tile-level encoder of Prov-
GigaPath [14]. All models are initialized from scratch and
trained for 100 epochs using the AdamW optimizer and a
cosine decay scheduler with a final learning rate factor of 0.1.
We conduct a grid search over ten learning rates (1 × 10−6

to 1 × 10−3) and employ early stopping with a patience of
10 epochs based on validation loss. During training, we use
a batch size of 4 and randomly sample a maximum of 2,000
tiles per WSI. For evaluation, we select the checkpoint with
the lowest validation loss, use a batch size of 1, and process
all tiles per WSI. We report the average of the top-3 results for
each metric and calculate P-values using Welch’s t-test [38]
to compare each method against PathRWKV. All experiments
were conducted on 4 NVIDIA RTX4090 GPUs using Python
3.12.12, PyTorch 2.9.1, and CUDA 12.8.

C. Comparison with SOTA Methods
To demonstrate the effectiveness of PathRWKV for slide-

level WSI modeling, we compared it against 11 state-of-the-
art (SOTA) methods, including SlideAve and SlideMax from
MINNs [28], ABMIL [13], CLAM [6], DSMIL [29], DTFD-
MIL [16], TransMIL [15], Prov-GigaPath [14], S4MIL [30],
MambaMIL [24], and MamMIL [31].

As presented in Tab. I, PathRWKV demonstrates superior
performance and robust generalizability, achieving SOTA re-
sults on 10 out of 11 datasets across 9 distinct downstream
tasks. Specifically, on standard classification benchmarks such
as CAMELYON16 and IMP-CRS-2024, most deep learning-
based methods achieve high metrics (> 90% Accuracy, AUC,
and F1), with the exception of simple pooling strategies,
SlideAve and SlideMax, that lack the representational ca-
pacity for comprehensive slide-level modeling. Among high-
performing models, PathRWKV consistently secures the high-
est scores across all three metrics.

In contrast, the TCGA datasets present a significantly more
challenging scenario, where the average performance of most
methods drops to approximately 70% due to the intrinsic
complexity and heterogeneity of the samples. Despite these
challenges, PathRWKV establishes its efficacy on the majority
of TCGA datasets, validating the capability of the proposed
TimeMix and ChannelMix modules to capture complex patho-
logical dependencies. However, we observe a performance gap
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TABLE I
THE PERFORMANCE COMPARISON WITH SOTA METHODS ON ELEVEN DOWNSTREAM DATASETS.

Dataset Metric SlideAve [28] SlideMax [28] ABMIL [13] CLAM [6] DSMIL [29] DTFD-MIL [16] TransMIL [15] GigaPath [14] S4MIL [30] MamMIL [31] MambaMIL [24] PathRWKV
Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value P-Value Value

PANDA
Acc.[%] 63.92 < 0.001 62.74 < 0.001 76.06 0.008 75.97 0.029 76.39 0.042 75.53 0.092 75.79 0.014 73.58 0.002 75.93 0.004 75.70 0.006 75.99 0.009 76.45
AUC[%] 89.53 < 0.001 88.54 < 0.001 94.71 0.005 94.74 0.018 94.20 0.012 93.93 0.035 93.87 0.044 93.67 0.032 94.07 0.014 94.81 0.040 94.30 0.006 94.89
F1[%] 60.76 < 0.001 55.94 < 0.001 70.30 0.007 69.90 0.023 70.12 0.022 70.03 0.017 69.02 0.009 68.06 0.006 70.70 0.003 69.94 0.042 70.56 0.008 70.81

CAMELYON16
Acc.[%] 68.99 < 0.001 72.87 < 0.001 98.45 0.018 98.45 0.010 92.25 0.049 98.45 0.012 98.45 0.025 98.45 0.020 98.45 0.028 97.67 0.037 97.67 0.014 98.45
AUC[%] 55.19 < 0.001 74.44 < 0.001 97.90 0.026 98.77 0.015 96.51 0.004 98.65 0.035 98.80 0.025 97.93 0.004 98.92 0.027 98.67 0.015 99.03 0.008 99.11
F1[%] 62.70 < 0.001 70.29 0.004 98.34 0.018 98.34 0.014 91.47 0.008 98.34 0.010 98.34 0.022 98.34 0.020 98.34 0.023 97.52 0.037 97.50 0.039 98.34

IMP-CRS-2024
Acc.[%] 92.33 < 0.001 91.67 0.003 94.67 0.022 94.22 0.004 94.44 0.035 94.33 0.014 94.44 0.022 94.56 0.018 94.78 0.020 94.22 0.007 94.33 0.013 94.78
AUC[%] 98.59 < 0.001 98.56 0.001 99.36 0.003 99.42 0.011 99.40 0.006 99.41 0.008 99.44 0.005 99.43 0.006 99.44 0.028 99.41 0.009 99.43 0.019 99.45
F1[%] 92.67 < 0.001 92.08 0.006 94.90 0.021 94.40 0.004 94.69 0.027 94.67 0.011 94.54 0.004 94.83 0.012 94.85 0.019 94.41 0.015 94.52 0.017 95.09

TCGA-BRCA
Acc.[%] 59.20 0.015 55.19 0.015 59.30 0.008 59.39 0.005 59.39 0.009 59.30 0.007 59.84 0.006 59.30 0.007 59.39 0.002 59.30 0.008 59.30 0.011 60.11
AUC[%] 61.14 0.009 56.97 0.022 63.42 0.008 63.10 0.024 64.32 0.034 64.18 0.037 61.47 0.009 64.12 0.026 63.71 0.026 59.84 0.023 59.67 0.004 64.35
F1[%] 25.82 0.018 26.09 0.020 27.54 0.004 30.00 0.019 30.04 0.040 28.64 0.018 26.57 0.021 29.41 0.024 29.59 0.004 28.73 0.014 25.88 0.018 30.40

TCGA-GBM
Acc.[%] 98.60 0.034 97.90 0.004 98.60 0.025 98.60 0.022 99.30 0.007 98.60 0.025 97.90 0.004 99.30 0.028 99.30 0.027 98.60 0.022 99.30 0.003 100.00
AUC[%] 66.27 0.007 65.71 0.016 66.67 0.023 66.67 0.010 66.51 0.035 66.19 0.016 65.87 0.016 66.59 0.004 66.67 0.023 66.67 0.014 66.67 0.037 66.67
F1[%] 74.65 0.023 49.47 0.034 74.65 0.008 74.65 0.028 74.65 0.002 74.65 0.015 49.47 0.034 89.82 0.003 89.82 0.019 74.65 0.025 89.82 0.026 100.00

TCGA-LGG
Acc.[%] 68.81 0.004 68.81 0.003 68.14 0.006 61.07 0.028 68.47 0.019 68.15 0.006 68.44 0.007 68.46 0.001 66.44 0.024 68.50 0.008 68.14 0.037 69.13
AUC[%] 71.80 0.004 71.67 0.009 71.89 0.017 67.59 0.010 71.95 0.009 71.79 0.008 67.88 0.004 71.68 0.019 72.10 0.024 71.68 0.034 71.89 0.028 72.61
F1[%] 68.54 0.002 68.00 0.007 68.23 0.001 60.28 0.027 68.46 0.013 68.38 0.014 66.44 0.030 62.35 0.056 63.89 0.023 68.18 0.017 66.69 0.003 68.96

TCGA-CESC
Acc.[%] 62.96 0.024 62.96 0.007 59.26 0.005 66.67 0.023 70.37 0.009 59.26 0.020 66.67 0.034 67.78 0.003 55.56 0.001 66.67 0.001 59.26 0.013 70.37
AUC[%] 68.13 0.005 56.59 0.002 62.09 0.004 65.93 0.008 70.88 0.029 68.13 0.007 70.33 0.022 71.43 0.012 56.04 < 0.001 67.03 0.017 58.24 < 0.001 75.27
F1[%] 62.50 0.019 62.91 0.024 59.03 0.003 66.67 0.031 69.32 0.009 58.35 0.017 66.48 0.021 67.75 0.001 55.49 0.002 65.92 0.037 58.35 0.010 70.33

TCGA-ESCA
Acc.[%] 47.22 0.009 38.89 0.006 47.22 0.009 55.56 0.007 47.22 0.008 47.22 0.0007 47.22 0.014 55.56 0.026 50.00 0.009 50.00 0.012 55.56 0.021 55.56
AUC[%] 65.00 0.017 48.57 0.002 63.35 0.012 65.09 0.005 64.39 0.004 65.33 0.013 64.68 0.002 65.35 0.007 65.10 0.004 65.09 0.022 65.47 0.006 65.96
F1[%] 38.67 0.017 28.94 0.006 39.09 0.005 37.20 0.009 26.67 0.023 32.46 0.007 41.44 0.008 44.14 0.003 43.52 0.004 35.08 0.006 32.22 0.005 48.31

TCGA-LIHC C-Index 0.522 0.002 0.533 0.010 0.549 0.009 0.546 0.030 0.553 0.027 0.581 0.002 0.575 0.033 0.573 0.011 0.550 0.004 0.529 0.004 0.574 0.016 0.584
TCGA-BLCA C-Index 0.472 0.013 0.561 0.016 0.573 0.019 0.572 0.006 0.571 0.002 0.567 0.007 0.559 0.009 0.572 0.024 0.576 0.002 0.538 0.007 0.575 0.022 0.579
TCGA-LUNG C-Index 0.490 0.007 0.534 0.017 0.537 0.001 0.550 0.009 0.518 0.025 0.535 0.011 0.543 0.013 0.505 0.005 0.525 0.003 0.529 0.009 0.547 0.014 0.518

Fig. 4. Visualization of a high-grade lesion WSI sample from the CAMELYON16 dataset. From left to right: the raw image, the ground truth label
annotated by the pathologist, feature embeddings extracted by the Prov-GigaPath tile-level encoder, and CAMs from each model.

on the TCGA-LUNG overall survival task, where MambaMIL
achieves the leading performance. We attribute this to the
inherent trade-off of our max pooling strategy. While it ensures
O(1) inference memory, it focuses on the most salient features
and may inadvertently discard global contextual cues (e.g.,
total tumor burden) that are beneficial for specific prognos-
tic predictions, which Attention mechanism in MambaMIL
preserve better. Nevertheless, the strong performance of both
PathRWKV and MambaMIL underscores the structural advan-
tage of SSMs over conventional pooling models and Trans-
formers in modeling multi-scale relationships within WSIs.

A core innovation of PathRWKV is its asymmetric de-
sign, which fundamentally optimizes GPU memory utilization
during inference. Fig. 5 compares the memory consumption
profiles of various methods as the number of input tiles
increases. Conventional attention-based methods (e.g., AB-
MIL, CLAM), Transformers (e.g., TransMIL, Prov-GigaPath),
and even recent linear-complexity models (e.g., MambaMIL)
exhibit linear memory growth (O(N)). Although these SSM-
based approaches utilize linear attention mechanisms similar
to PathRWKV, they typically rely on the Gated Attention
mechanism from ABMIL [13] for final aggregation. This

strategy requires matrix multiplication between the complete
input and output tensors to compute attention scores, ne-
cessitating the retention of the entire input tensor in GPU
memory until the output is generated. This dependency causes
memory usage to scale linearly with sequence length, effec-
tively negating the inherent efficiency advantages of the SSM
backbone and severely constraining applicability to large-
scale WSIs in resource-limited environments. In contrast, by
equal contribution of linear attention and max aggregation
strategy, PathRWKV achieves constant memory consumption
(O(1)), as evidenced by the flat trajectory in Fig. 5. This
efficiency confirms that our recurrent inference formulation
enables sequential iteration over WSI tiles without caching
historical states, successfully resolving the trade-off between
training efficiency and inference scalability. Notably, while
PathRWKV exhibits linear time complexity (O(N)) same with
other methods, it maintains a competitive inference speed,
effectively balancing its relatively large parameter size for
complex feature modeling with computational efficiency.

To further assess the interpretability of our framework,
Fig. 4 visualizes the Class Activation Maps (CAMs) for
representative samples from the CAMELYON16 dataset. Note
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Fig. 5. GPU memory consumption and inference time versus the
number of input tiles, where ”M” denotes the number of parameters
in millions. PathRWKV demonstrates superior efficiency with constant
O(1) memory usage, significantly outperforming all baseline methods
that exhibit linear O(N) memory growth, including SSMs with attention
aggregation. Regarding inference speed, despite the inherent linear
O(N) time complexity, PathRWKV achieves competitive and stable
performance relative to its parameter size.

that, as standard attention maps are not directly obtainable
from Prov-GigaPath and S4MIL, we visualize their saliency
maps instead. Consistent with quantitative findings, SlideAve
and SlideMax fail to generate meaningful activation patterns
due to their simplistic aggregation logic. Compared with the
ground truth, attention-based methods (e.g., ABMIL, CLAM)
tend to assign uniform weights across the entire region of
interest, demonstrating a limited capacity to distinguish fine-
grained intratumoral heterogeneity. Furthermore, they exhibit
relatively higher attention scores in normal regions. Among
transformers, TransMIL misdirects attention to incorrect areas,
while Prov-GigaPath focuses on normal regions in the second
sample; this is likely attributable to overfitting on the small-
scale dataset. In contrast, all SSMs successfully detect the
accurate regions. Notably, PathRWKV not only accurately
highlights global tumor regions but also delineates local
feature intensity variances through its heatmap distribution.
This visualization validates the effectiveness of the multi-
scale modeling facilitated by the Time Mix and Channel
Mix modules, demonstrating PathRWKV’s ability to extract
hierarchically significant pathological features.

V. DISCUSSION

To rigorously evaluate the contribution of each component
within PathRWKV and validate our design choices, we con-
ducted a comprehensive series of ablation studies. The results
are summarized in Fig. 6.

A. Validation of Asymmetric Design and Aggregation

A core innovation of PathRWKV is the asymmetric struc-
ture, designed to resolve the conflict between training through-
put and inference memory efficiency. This design is predicated
on two critical hypotheses: first, that a model trained on
short sequences can effectively generalize to full-length WSIs
during inference; and second, that max pooling serves as a
sufficient and efficient aggregator for slide-level features. To

validate these premises, we conducted ablation studies on each
component.
Inference Scalability. Our asymmetric protocol involves train-
ing on a fixed subsample (2,000 tiles) while inferring on the
entire WSI (up to 40,000+ tiles). Fig. 6a analyzes the impact
of inference sequence length on performance. Despite the
potential distribution shift caused by the length discrepancy,
PathRWKV exhibits a continuous performance improvement
as the number of inference tiles increases. The steepest
performance gains coincide with the peak of the WSI tile
count distribution (approx. 8,000–12,000 tiles), indicating that
the model effectively integrates information from the entire
slide. This confirms that our recurrent backbone successfully
captures long-range dependencies and generalizes well to
sequence lengths far exceeding those seen during training.
Aggregation Strategy. The choice of aggregation function
dictates both the representation quality and memory complex-
ity. While Gated Attention (Attn) is the standard in MIL, it
necessitates storing all tile features in memory to compute
global softmax weights, leading to O(N) memory usage.
In contrast, our proposed streaming max pooling strategy
maintains O(1) complexity. As shown in Fig. 6b, max pooling
demonstrates remarkable competitiveness. Compared to Atten-
tion, it achieves comparable performance on CAMELYON16
and substantially higher Accuracy and F1 scores on TCGA-
GBM (Acc: 0.993 vs. 0.986; F1: 1.000 vs. 0.747). Crucially,
max pooling aligns with the worst-pattern diagnostic principle
in pathology, where the presence of a specific high-grade le-
sion often dictates the diagnosis, rendering the global average
less relevant. However, we acknowledge the limitation that
strictly selecting the maximum feature may discard informa-
tion regarding tumor burden and the global microenvironment,
which are valuable for survival analysis. This is reflected in
the TCGA-LIHC task, where Attention slightly outperforms
max pooling (0.600 vs. 0.584) by capturing global context.
Nevertheless, given the massive efficiency gain (O(1) vs.
O(N) memory), max pooling represents an optimal trade-off
for efficient WSI modeling.

B. Spatial-Temporal Robustness

To address the overfitting risks on small-scale datasets and
the loss of spatial structure due to sampling, we introduced
random sampling paired with 2D PE.
Sampling Strategy. Fig. 6c compares four sampling strategies.
Sequential sampling feeds image features and coordinates
according to their original extraction order, maintaining a
deterministic sequence. Random sampling introduces a global
random permutation, mitigating potential biases associated
with the raster scanning order. Z-order sampling [39] utilizes
a space-filling curve to retain 2D spatial locality within the
flattened 1D sequence. Local-box sampling prioritizes dense
local contexts by randomly selecting centroids and querying
spatial neighbors. Intuitively, structure-preserving strategies
like Sequential or Z-Order might seem superior for an RNN-
based model like PathRWKV. However, the empirical results
counter-intuitively favor random sampling, which achieves the
highest metrics on CAMELYON16 and TCGA-GBM. We
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Fig. 6. Ablation studies and performance analysis. (a) Sensitivity analysis of inference performance with respect to the maximum number of
input tiles on the CAMELYON16 dataset. (b)–(e) Impact of key components on model performance, including sampling strategies, aggregation
methods, position encoding, and hidden dimension sizes across CAMELYON16, TCGA-GBM, and TCGA-LIHC datasets. The baseline strategies
are consistently shown in cyan. (f) Comparison between Single-Task Learning (STL) and multi-task learning (MTL) on the TCGA-LUNG dataset for
tumor staging, cancer subtyping, and overall survival prediction.

hypothesize that random sampling acts as a potent data aug-
mentation technique, breaking the model’s reliance on specific
raster-scanning orders and preventing overfitting to incidental
sequence patterns. While it disrupts local spatial continuity, it
forces the model to learn more robust, permutation-invariant
representations.

2D Position Encoding. The efficacy of random sampling is
intrinsically linked to the inclusion of 2D PE. As random
sampling discards the implicit spatial order, PE is essential
for explicitly injecting coordinate information back into the
features. Fig. 6d corroborates this, showing that adding PE
consistently maintains or enhances performance across tasks

(e.g., boosting TCGA-LIHC C-Index from 0.555 to 0.584).
This confirms that PathRWKV utilizes these encodings to
reconstruct the spatial context of the tissue microenvironment,
thereby mitigating the structural information loss caused by
random sampling.

C. Generalization and Optimization
Finally, we analyzed the components designed to enhance

model generalization under data-constrained conditions.
Hidden Dimension. We investigated the impact of model ca-
pacity by varying the hidden dimension D (Fig. 6e). Increasing
D does not linearly translate to better performance. While
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D = 1024 yields the highest AUC on CAMELYON16, it de-
grades performance on the smaller TCGA-LIHC dataset, likely
due to overfitting. Conversely, D = 768 offers the optimal
balance, achieving the highest performance on TCGA-GBM
and competitive results elsewhere. This finding underscores
the importance of matching model complexity to the scale of
available pathological data, validating our choice of 768 as the
default configuration.
Multi-task Learning. The MTL module is designed to regu-
larize feature learning by leveraging auxiliary tasks. Fig. 6f
illustrates the performance of various backbones with and
without MTL on the TCGA-LUNG dataset. The results
demonstrate that our MTL module is a versatile plugin,
improving the performance of most baselines (e.g., boosting
ABMIL and CLAM). While there are marginal drops in
specific cases for single-task specialists (e.g., a 0.4% drop
for DSMIL on Tumor Stage), the overall trend signifies that
learning shared representations across related clinical tasks
effectively reduces overfitting and improves the robustness of
the slide-level features.

VI. CONCLUSION

In conclusion, this work proposed PathRWKV, a novel
slide-level modeling framework that introduces an asymmetric
training and inference paradigm, provides a principled solution
to long-standing challenges in whole slide image analysis. To
the best of our knowledge, PathRWKV is the first approach to
explicitly decouple slide-level training and inference within a
unified structure, enabling robust learning during parallelized
training while preserving holistic slide reasoning at inference.
Through the integration of asymmetric state space modeling,
random tile sampling with multi-task learning regularization,
2D sinusoidal position encoding, and multi-scale feature mix-
ing, PathRWKV effectively addresses weak supervision, data
scarcity, disrupted spatial context, and heterogeneous multi-
scale feature interactions. Extensive experiments on 29,073
whole slide images across 11 public datasets validating its
effectiveness and reliability for clinical-grade pathological in-
ference. We believe PathRWKV establishes a new perspective
on slide-level modeling by showing that asymmetry between
training and inference is not a limitation, but a powerful
inductive principle for scalable and trustworthy computational
pathology.
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VII. THEORETICAL ANALYSIS OF ASYMMETRIC
STRUCTURE

In the main text, we introduce an asymmetric structure that
utilizes parallel processing during training and recurrent state-
passing during inference. Here, we provide the mathematical
proof demonstrating that the chunk-based recurrent inference
is mathematically equivalent to processing the entire WSI
sequence in a single pass.

It is worth noting that despite the difference in execution
modes, both approaches rely on the same fundamental linear
operations without introducing any complex approximations.
As revealed by the non-trivial derivations of the closed-form
solution (Eq. (16)) and the state-passing mechanism (Eq. (20))
below, the memory of the model is mathematically preserved

through simple linear decays. This ensures that no global
context information is lost due to the chunking strategy.

Recall the core state update rule of the PathRWKV block
defined in Eq. (4) of the main text. For a sequence of tiles
indexed by t, the hidden state matrix St and the output yt are
computed as:

St = wt ⊙ St−1 + ktv
⊤
t (11)

yt = rt ⊙ (St−1 + u⊙ ktv
⊤
t ) (12)

where ⊙ denotes element-wise multiplication, and wt repre-
sents the data-dependent decay at step t. S0 is initialized as a
zero matrix.

Proposition VII.1 (Associativity and Inference Equivalence).
Let X = {x1, x2, . . . , xN} be the complete sequence of tiles
from a WSI. Let A denote the computation of the final state
SN by processing all tiles continuously:

SN = Φ(X , S0) (13)

Let B denote the computation where the sequence is split
into two contiguous chunks X1 = {x1, . . . , xM} and X2 =
{xM+1, . . . , xN} (where 1 < M < N ). The inference is
performed sequentially by passing the intermediate state:

SM = Φ(X1, S0) (14)
S′
N = Φ(X2, SM ) (15)

Then, the final states are identical: SN = S′
N .

Proof. The recursive update rule in Eq. (11) implies that the
current state depends on the immediate past state, which in
turn depends on its predecessor. By recursively unrolling this
dependency back to the initial step t = 1, we can observe
a pattern: the contribution of an input kiv

⊤
i at step i to the

current state St is scaled by the cumulative product of all
subsequent decay factors. Mathematically, this accumulation
allows us to express St in a non-trivial closed form:

St =

t∑
i=1

 t∏
j=i+1

wj

⊙ (kiv
⊤
i ) +

 t∏
j=1

wj

⊙ S0 (16)

Assuming S0 = 0, the term involving S0 vanishes.
Case 1: Global Continuous Inference (A) Applying Eq. (16)
to the full sequence t = N :

SN =

N∑
i=1

 N∏
j=i+1

wj

⊙ (kiv
⊤
i ) (17)

We can split this summation into two parts at index M .

SN =

M∑
i=1

 N∏
j=i+1

wj

⊙ kiv
⊤
i︸ ︷︷ ︸

Part 1

+

N∑
i=M+1

 N∏
j=i+1

wj

⊙ kiv
⊤
i︸ ︷︷ ︸

Part 2

(18)
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Notice that for Part 1, the decay product can be factored:∏N
j=i+1 wj = (

∏N
j=M+1 wj)⊙ (

∏M
j=i+1 wj).

Case 2: Chunked Sequential Inference (B) First, compute
the state SM after the first chunk X1:

SM =

M∑
i=1

 M∏
j=i+1

wj

⊙ kiv
⊤
i (19)

Next, use SM as the initial state for the second chunk X2.
We apply the recursive definition starting from step M + 1
to N . Here, we treat SM similarly to S0 in Eq. (16), but
with a crucial difference: the historical information carried
by SM must continue to decay as it propagates through the
new sequence from M + 1 to N . By induction, the final
state S′

N comprises two components: the decayed history from
the previous chunk and the accumulated information from the
current chunk:

S′
N =

 N∏
j=M+1

wj

⊙ SM +
N∑

i=M+1

 N∏
j=i+1

wj

⊙ kiv
⊤
i

(20)
Substitute SM into the equation above:

S′
N =

 N∏
j=M+1

wj

⊙

 M∑
i=1

 M∏
j=i+1

wj

⊙ kiv
⊤
i


+

N∑
i=M+1

 N∏
j=i+1

wj

⊙ kiv
⊤
i

(21)

Distributing the decay term
∏N

j=M+1 wj into the summation
bracket exactly reconstructs the Part 1 term from Eq. (18), and
the second term is identical to Part 2.

S′
N ≡ SN (22)

Thus, chunked inference with state passing is mathematically
exact to global inference.

VIII. IMPLEMENTATION DETAILS AND HARDWARE
ACCELERATION

In this section, we provide a detailed description of the
implementation of the PathRWKV backbone, specifically fo-
cusing on the custom CUDA kernels designed to enable
the asymmetric training and inference structure described in
Section III.

A. Custom CUDA Kernels
To efficiently implement the mathematical duality of the

Linear Attention mechanism, we implemented two distinct sets
of CUDA kernels, corresponding to the parallel (training) and
recurrent (inference) modes.
Parallel Kernel for Training. During training, we utilize the
wkv6 parallel kernel. This kernel is optimized for maximizing
throughput when the entire sequence is available in memory. It
implements the time-decayed aggregation described in Eq. 3.
Crucially, it fuses the computation of receptance (r), key
(k), value (v), and time-decay (w) processing into a single
GPU kernel to minimize memory access overhead (HBM

reads/writes). The backward pass kernel analytically computes
gradients for all parameters, including the time-dependent
decay rates, ensuring stable backpropagation through long
sequences without the vanishing gradient problem typical of
RNNs. The kernel leverages shared memory tiling and loop
unrolling to accelerate the accumulation of attention scores
along the sequence dimension T .
State-based Kernel for Inference. For inference on gigapixel
WSIs, we utilize the wkv6 state kernel. This kernel explicitly
manages the recurrent state to support the chunked processing
strategy. Unlike standard attention kernels, this kernel accepts
an additional input tensor Sin (the hidden state from the previ-
ous chunk) and outputs Sout (the updated state). This directly
implements the update rule derived in Proposition VII.1. To
further accelerate inference, the state update loop is vectorized
using float4 data types, allowing the GPU to process 4
floating-point numbers simultaneously per thread. The ker-
nel performs internal accumulation in float32 to maintain
numerical precision during the recursive updates, preventing
error accumulation over long WSI sequences.

B. Chunked Inference Implementation
The code implementation orchestrates the interaction be-

tween the CUDA kernel and the WSI data to minimize
memory footprint. Let N be the total number of tiles and
Bchunk be the chunk size. The inference process proceeds as
follows:
Initialization. A state tensor S of shape (B,H,Nhead, Nhead)
is initialized to zeros, where H is the number of heads and
Nhead is the head dimension.
Sequential Processing. The WSI is split into ⌈N/Bchunk⌉
chunks. For each chunk k:

Yk, Sk = Block(Xk, Sk−1) (23)

Here, Block calls the wkv6 state CUDA kernel, and Sk

represents the hidden state after processing the k-th chunk.
The state S is passed strictly from CPU to GPU memory only
once per chunk, minimizing PCI-e bandwidth usage.
Streaming Aggregation. Concurrently with feature extraction,
the slide-level representation is updated using the streaming
max pooling aggregation: hglobal = max(hglobal,max(Yk)).
This ensures the GPU memory usage remains constant O(1)
regardless of slide size.


