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ARTICLE INFO ABSTRACT

Article history: Pathological diagnosis is essential for patient care, with region-of-interest (ROI) anal-
ysis serving as a critical pathological approach to extract localized cellular details that
guide precise clinical decisions. Extracting robust visual representations from pathol-
ogy ROI datasets is crucial yet remains challenging due to limited annotations and
Keywords: Pathological ROI classifica- domain-specific complexities inherent to these focused image regions. While self-
tion, Self-supervised Learning, State supervised learning (SSL) has shown promise in leveraging unlabeled data, existing
Space Model approaches often fall short in addressing the unique characteristics of pathology ROI
data from three aspects: (1) translation invariance, (2) local-global feature integration,
and (3) domain shift. To address them, we present SSMamba, a novel hybrid SSL
framework tailored for pathological ROI image classification. The key innovation lies
in the synergistic integration of three corresponding domain-aware components: (1) To
mitigate translation invariance, we designed Local Perception Residual (LPR) Module,
which encodes spatially-aware local features by preserving fine-grained structural ar-
rangements within ROISs; (2) To capture both localized patterns and global tissue struc-
tures across ROI regions, we proposed Directional Multi-scale (DMS) Module, which
enables more holistic feature extraction across varying resolutions through directional
multi-scale aggregation; (3) To improve generalization across scanners and institutions
for ROI data, we proposed Mamba masked image modeling (MAMIM), a novel masked
image modeling SSL pretraining method. By leveraging a unique decoder design to re-
construct partially masked inputs from pathological ROI datasets, this approach effec-
tively promotes scanner-invariant pretraining. Across 7 public ROI datasets, SSMamba
surpasses 6 state-of-the-art pathology foundation models, underscoring the necessity
of architectures that explicitly capture pathological characteristics and showing that
task-specific training—even with limited data—yields superior visual representations
to generic ViT-style foundations.

© 2025 Elsevier B. V. All rights reserved.

1. Introduction

Pathology diagnosis is indispensable in clinical practice, as
“Equal contribution. it relies on the detailed analysis of pathological images to en-
**Corresponding author: Tianxiang Cui (tianxiang.cui @nottingham.edu.cn) able accurate disease detection and inform precise treatment
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planning (Srinidhi et al. [2021). Among the key tools for
such analysis, Region-of-Interest (ROI) refers to specific sub-
regions within pathological images that contain critical diag-
nostic information (e.g., abnormal cells or tissue structures),
serving as the primary focus for detailed examination due
to their relevance to disease characteristics. Traditional ROI
analysis approaches largely depended on handcrafted features,
which are often subjective and suffer from limited expressive-
ness (Madabhushi and Lee, [2016)). In contrast, deep learning
has shown superior representation learning capabilities (LeCun
et al., 2015)), but its success hinges on large-scale annotated
datasets—resources that are particularly scarce and expensive
in the pathology domain. To alleviate this dependency, transfer
learning from natural image datasets such as ImageNet (Deng
et al.l 2009) has been widely adopted (Senousy et al., [2021).
However, such pretraining strategies often fail to account for
the domain-specific distribution and semantic gap between nat-
ural and pathological images, leading to suboptimal represen-
tations. To further improve the performance of the pretrain-
ing, self-supervised learning (SSL) (Azizi et al.,|2021) has been
adopted as a powerful paradigm, learning visual representations
from unlabeled data. In natural image domains, SSL meth-
ods, particularly contrastive learning (CL) (Zhang et al.,|[2022)
and masked image modeling (MIM) (Chen et al., 2024b)), have
closed the performance gap with supervised learning on several
downstream tasks (Jing and Tian, [2020).

In the pathological domain, large-scale self-supervised learn-
ing (SSL) on diverse samples has led to the emergence of patho-
logical foundational models (FMs). These models, rooted in Vi-
sion Transformer (ViT)-based architectures (Dosovitskiy et al.,
2021; [Liu et al. |2021)), have gained widespread adoption for
their cross-task and cross-dataset generalizability. Neverthe-
less, recent applications reveal a pivotal finding: even when
trained on expanded datasets, FMs tend to converge to sim-
ilar performance, whereas task-specific models with domain-
aware designs consistently surpass them. These observations
suggest that embedding pathology-aware inductive biases and
pairing targeted in-domain SSL with lightweight task-specific
adaptation may better exploit limited labels and heterogeneous
cohorts. Considering pathology’s unique characteristics, we ob-
serve three critical perspectives:

A primary challenge is translation invariance. Tissue sec-
tions in WSIs may undergo arbitrary shifts and rotations. Mod-
els relying on absolute positional encodings (Guo et al., |[2022)
are susceptible to overfitting to coordinate artifacts, rather
than learning biologically relevant spatial patterns (Kayhan and
Gemert, [2020).

Additionally, local-global feature integration complicates
modeling. Accurate diagnosis often depends on both fine-
grained cellular features (e.g., nuclear atypia) and coarse-
grained tissue architecture (e.g., glandular organization). CNN-
based methods (Lerousseau et al. [2020) capture local pat-
terns but lack global context, while Transformer-based meth-
ods (Stegmiiller et al., [2023) offer long-range modeling at the
cost of computational efficiency. Mamba-based models (Gu and
Dao, 2023) provide efficient sequence modeling, but their inher-
ent autoregressive bias (Yu and Wangl [2025) misaligns with the

non-sequential and spatially entangled nature of pathology.

Domain shift constitutes the third critical challenge. Vari-
ability across scanners, staining protocols, and institutional
practices induces distribution shifts that impede cross-setting
generalization (L1 et al., 2025} Jiang et al. 2024). Existing
methods struggle to achieve scanner-invariant representation
learning during training, resulting in compromised generaliza-
tion capability.

These findings indicate that the distinctive attributes of
histopathological images—spatial heterogeneity, stain vari-
ability, and multiscale structural dependencies—call for
pathology-aware inductive biases and training regimes that pri-
oritize in-domain robustness over sheer pretraining scale. Ac-
cordingly, we introduce SSMamba, a two-stage framework for
ROI classification that couples in-domain self-supervised learn-
ing with task-specific fine-tuning. SSMamba targets the three
challenges via: (i) a Local Perception Residual (LPR) mod-
ule that preserves translation/rotation invariance through rela-
tive spatial coding; (ii) a Directional Multi-scale (DMS) back-
bone that merges cellular-level detail with tissue-level context
via directional state updates; and (iii) Mamba Masked Image
Modeling (MAMIM), a masked reconstruction objective that
promotes scanner-invariant representations.

In summary, embedding pathology-aware inductive biases
and adopting a targeted two-stage regimen enables superior
task-specific performance with reduced data and training cost.
Our main contributions are:

e Local Perception Residual (LPR). We introduce a rel-
ative spatial coding module that suppresses absolute-
coordinate bias and preserves translation/rotation invari-
ance, enabling robust learning of local tissue topology.

e Directional Multi-scale (DMS) backbone. @ We re-
engineer Mamba state updates with directional convolu-
tions to fuse cellular-level detail with tissue-level context
in linear-time sequence modeling, avoiding the quadratic
cost of global self-attention.

e Mamba Masked Image Modeling (MAMIM). We
propose a masked reconstruction objective with scan-
ner/stain—aware perturbations to drive scanner-invariant,
morphology-centered representations and improve cross-
site generalization.

o Two-stage, data-efficient training. We couple targeted
in-domain SSL with lightweight supervised fine-tuning,
dispensing with billion-scale generic pretraining while re-
taining strong transferability.

e State-of-the-art results. Across seven ROI benchmarks,
SSMamba surpasses six pathology foundation models;
on CAMI16 it yields +1.30% Acc / +1.83% F1 over
CTransPath, validating the effectiveness of the proposed
components.
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2. Related Works

2.1. SSL in Pathological Image Diagnosis

Self-supervised learning (SSL) has become a cornerstone
of representation learning in computational pathology, where
annotations are scarce. Contemporary SSL methods for im-
ages fall into two main families: contrastive learning (CL) and
masked image modeling (MIM).

Contrastive learning. CTransPath (Wang et al., [2022a)—a
seminal transformer-based CL approach—uses context-aware
instance discrimination to learn discriminative features
from unlabeled whole-slide images (WSIs) and achieves
state-of-the-art performance on multiple downstream tasks.

Masked image modeling. MIM has recently overtaken
CL in popularity thanks to its reconstruction-centric objectives
and robustness to label noise. Pathology-tailored advances
include UNI (Chen et al., 2024a) and Virchow2 (Zimmer-
mann et al., [2024)), which adapt the DINOv2 framework with
distillation-based CL and tissue-specific masking to preserve
critical morphology; and GigaPath (Xu et al.l 2024), which
scales MIM to a billion-parameter model pretrained on 15mil-
lion pathology patches, introducing a gigapixel-scale protocol
that improves generalization across cancer types and institu-
tions. These methods outperform earlier medical MIM variants
such as SelfMedMAE (Zhou et al.,[2023) in modeling complex
pathological structures.

Multimodal SSL. MUSK (Xiang et al., 2025) combines
vision-language contrastive alignment with masked modeling
to leverage paired histopathology images and reports, enabling
zero-shot transfer via a cross-modal transformer. CONCH (Lu
et al.,|2023)) employs language-supervised pretraining on medi-
cal text corpora to inject pathology-specific semantics, facilitat-
ing interpretable feature extraction by aligning image embed-
dings with diagnostic concepts.

2.2. Mamba in Computer Vision

The Mamba architecture (Gu and Dao, 2023)), initially devel-
oped for NLP sequence modeling, has recently expanded into
computer vision for its linear complexity and ability to capture
long-range dependencies. VMamba (Liu et al., [2024) pioneers
in 2D adaptation through its Cross-Scan Module, which con-
verts images into directional 1D sequences, balancing efficiency
and spatial modeling in general vision tasks. Despite their effi-
ciency, Mamba-based models have notable limitations in patho-
logical image analysis. First, the autoregressive sequence bias
clashes with the spatial disorder and non-sequential nature of
tissue architecture (Yu and Wangl 2025), where cellular ar-
rangements lack strict sequential patterns. Second, fixed scan-
ning paths cannot adapt to hierarchical tissue structures, fail-
ing to prioritize clinically relevant regions dynamically. Third,
linear scanning mechanisms intensify stain variation artifacts
due to the lack of explicit invariance design. Recent medical
adaptations (e.g., NaMA-Mamba (Wang et al., [2025)), Spine-
Mamba (Zhang et al.l 2025b)) focus on endoscopic or 3D data,
yet none tackle pathology-specific challenges such as stain het-
erogeneity and translational variance, which are critical for reli-
able diagnostic performance in computational pathology work-
flows.

3. Methods

3.1. Overall Architecture

As shown in Fig. [T[a), SSMamba adopts a four-stage hierar-
chical encoder (L;—L,) tailored for pathology. The architecture
addresses three key challenges unique to WSI.

First, the encoder departs from conventional MIM designs by
implementing a pyramidal architecture, where each stage L; re-
fines and integrates multi-scale representations. The LPR mod-
ule ensures translation invariance via relative spatial encoding
of histo-architectural patterns, while the DMS module facili-
tates simultaneous local-global information flow through bidi-
rectional state propagation. This structure enables effective fea-
ture extraction from fine-grained cellular patterns (L) to high-
level tissue topology (Ly).

Second, to overcome the incompatibility between Mamba’s
autoregressive nature and the MAE framework, SSMamba in-
troduces a non-causal DMS module, enabling full token interac-
tion. Additionally, a learnable class token ([CLS]) is introduced
as a diagnostic anchor to aggregate global semantics. To pre-
serve efficiency, channel-split processing is employed, reducing
redundancy without sacrificing capacity.

Third, to mitigate scanner-induced artifacts and align repre-
sentations across institutions, we design MAMIM to drive the
model toward learning scanner-invariant features, thereby re-
ducing domain shifts and suppressing artifact-prone regions.
Given an input image X € RP"<3 we apply a 75% random
masking strategy (m, = 0.75), replacing m, - (H - W) patches
with learnable mask tokens X,,. This design retains contextual
cues via unmasked anchor patches, supporting downstream di-
agnostic tasks.

Formally, the hierarchical encoding process is defined as:

Fii1 = DMS((LPR(Fp), k€1,2,3,4 ey

where each stage k progressively downscales the spatial resolu-
tion while increasing channel depth, maintaining high diagnos-
tic fidelity.

Overall, SSMamba requires no auxiliary annotations or
pre/post-processing and demonstrates strong adaptability across
diverse pathology datasets. Its design integrates domain priors
with efficient representation learning, offering a robust founda-
tion for pathology-specific visual modeling.

3.2. DMS Module

Table 1: Architectural Comparison: Mamba Module in VMamba vs. DMS
Module in SSMamba

Feature Mamba DMS

Token Mixing Unidirectional Bidirectional

MAE Compatibility Limited Full

Spatial Processing SSM SSM + Parallel Conv
Pathology Optimization = Foundation model  Tissue integrity
Activation GeLU SiLU

We redesign the original Mamba module (Fig. [T{c)) to the
DMS module to address three key limitations of bidirectional
SSMs in vision tasks.
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(a) Architecture of the SSMamba
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Fig. 1: The Architecture of the SSMamba. (a) Overall architecture of SSMamba. (b) The original Mamba Module. (c) The proposed DMS Module. (d) The

proposed LPR Module. (e) The SSMamba decoder for MAMIM.

Table 2: Embedding Method Comparison for Pathology Image Classification.

Characteristic Linear PE (ViT) Patch-Merge (Swin) LPU (CMT) LPR (Ours)
Translation Invariance X v v v

Resolution Preservation v X v v

Local Feature Extraction X X v v

Stain Artifact Robustness X X X v

Computational Cost O(N) O(N/4) O(k*NC) Ok NC/2)
Implementation Linear Projection Patch Concatenation Conv+ReLU DWConv+Residual
Gradient Propagation Standard Limited Residual Multi-scale residual

First, the DMS module overcomes the unidirectional con-
straints in the original Mamba module, which relies on causal
convolutions (Cau-Conv1D) that enforce left-to-right sequence
modeling (Eq. [2):

k
Xeausallf] = > Wil - X[t = i] @)
i=0

where X asq1[] denotes the output at position ¢ after causal con-
volution; k is the kernel size of the causal convolution; W[i] rep-
resents the learnable weight at kernel position i; and X[t — i] is
the input feature at position ¢ — i in the sequence. This unidirec-
tional design hinders the model’s ability to capture full spatial
context—crucial in pathology, where malignant patterns often
depend on bidirectional interactions (e.g., tumor-stroma bound-
aries).

To resolve this, we introduce bidirectional depthwise sepa-
rable convolution (Sep-Conv1D), replacing Cau-Conv1D. This
includes a depthwise stage for per-channel filtering and a point-

wise stage for channel mixing:

k/2
Depthwise:  Xawlc, 1] = Z Wawlc, il - X[, t + i
i=—k/2 )
Pointwise:  X| = Wy - Xaw

where Xgy[c, 7] is the depthwise output at channel ¢ and position
t; k is the kernel size of the bidirectional convolution; Wgy[c, i]
denotes the depthwise weight for channel ¢ at kernel position
i; X[c,t + i] represents the input feature at channel ¢ and posi-
tion 7 + i; W)y, is the pointwise convolution weight matrix; and
X{ is the final output after pointwise convolution. This design
enables centered bidirectional context aggregation and captures
global tissue topology (e.g., tumor-stroma interfaces). It also
significantly reduces parameter count by a factor of 1/k + 1/C
compared to standard convolution, without sacrificing expres-
siveness.

Second, the DMS module restores parallel spatial dependen-
cies. While SSMs are sequential by nature, this processing ne-
glects parallel spatial interactions, which are vital for capturing
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local cellular patterns. Therefore, we introduce a symmetric
convolutional branch using regular 1D convolution and SiLU
activation:

X, = o (Reg-Conv1D (LinearC — C/2(Xin))) “4)

where o(x) denotes the SiLU activation function; Linear(C —
C/2) represents a linear projection layer that reduces the chan-
nel dimension from C to C/2; Xj, is the input feature map;
and Reg-Convl1D indicates a regular 1D convolution oper-
ation. This branch processes tokens concurrently, enhanc-
ing local discrimination and robustness against visual degra-
dation—especially important in differentiating visually similar
cancer subtypes.

Third, the DMS module addresses the mismatch be-
tween Mamba’s inherent autoregressive bias and the non-
autoregressive MAE framework—a conflict that induces train-
ing instability. To mitigate this, we fuse the bidirectional SSM
pathway and the convolutional pathway through channel-split
concatenation, maintaining computational efficiency:

X = Scan (o (Sep-Conv1D (Linearc_,c/2(Xin))))

. %)
Xow = LlnearC—>C (X ” X0

where Linearc_,¢/; is a linear projection layer that reduces the
channel dimension from C to C/2 ; Sep-ConvlD denotes the
bidirectional depthwise separable convolution defined in Eq. 3}
o is the SiLU activation function; Scan represents Mamba’s se-
lective scanning operation; || denotes concatenation along the
channel dimension; Xj, represents the input feature tensor with
C channels; [X; || X»] concatenates the SSM pathway output X
and the convolutional pathway output X, (from Eq.[4) along the
channel dimension; and Linearc_,¢ restores the channel dimen-
sion to C. This channel-split design (C — C/2) ensures full
token interaction while preserving the parameter count of the
original Mamba block.

In summary, the DMS module extends Mamba’s capabil-
ity from sequence modeling to biologically meaningful spatial
feature extraction, combining bidirectional recurrence, paral-
lel convolution, and non-autoregressive compatibility. Table
highlights the architectural advantages of DMS over VMamba.

3.3. LPR Module

Pathological analysis poses unique spatial challenges: diag-
nostic features such as nuclear morphology must be recognized
regardless of position—demanding translation invariance. Fur-
thermore, H&E staining introduces pseudo-patterns (e.g., dye
diffusion, fold artifacts), which can corrupt absolute positional
signals and amplify noise if naively encoded. Conventional po-
sitional encodings fall short in this context. For instance, ViT’s
absolute position encoding imposes fixed coordinate biases, vi-
olating shift-invariance. Swin introduces patch merge for hier-
archical downsampling, but it compresses spatial information
aggressively, exacerbating staining artifacts. While the Local
Perception Unit (LPU) in CMT (Guo et al 2022) introduces
depthwise separable convolutions for local feature capture, it
lacks explicit adaptation to pathological artifact characteristics.

To address these issues, we propose the LPR module,
a domain-specific positional encoding module optimized for

pathology. We begin with a pointwise convolution to compress
channels while preserving fine-grained cellular details:

X, = ReLU (BN (Conveiscp(X))) (6)
stage input X' € R¥>W>C where H' and W' denote the spa-
tial dimensions and C’ is the channel count; Convi_,cijp TEp-
resents a pointwise convolution layer that maps the input from
C’ to C'/2 channels; BN denotes batch normalization for stabi-
lizing training; ReLU is the rectified linear unit activation func-
tion. This operation reduces channels to Ci/)2, retaining critical
cellular details while mitigating computational overhead. The
result X; € RI>WXC/2 captures condensed yet discriminative
features.

To introduce translation-invariant local perception, we apply
depthwise convolution over X :

Xpw = BN (DWConvx (X)) @)

The depthwise convolution (DWConv) applies a k x k kernel
(typically 3 x 3) independently to each channel, enabling local-
ized feature extraction with shared weights across spatial po-
sitions—thereby promoting translation invariance. Compared
to standard convolution, it significantly reduces parameter cost
from O(k* - (C'/2)*) to O(k* - C'/2) by avoiding inter-channel
mixing.

To stabilize training and enhance context flow, we restore the
original representation via residual fusion:

Xrinal = Conveijpei (ReLUXpw)) + X' ®)

This residual path offers three advantages: (1) facilitates gradi-
ent propagation, (2) preserves original spatial semantics, and
(3) blends multi-scale local perception with global organiza-
tional context.

As summarized in Table 2} the LPR module fundamentally
improves pathology-oriented feature embedding by combin-
ing implicit positional encoding via DWConv with residual
pathways, effectively addressing critical domain-specific chal-
lenges. Unlike ViT’s coordinate-dependent linear encoding
and Swin’s resolution-reducing patch merge, LPR offers sev-
eral key advantages: (1) Enhanced translation invariance, mit-
igating slide-scanning variation; (2) Native resolution preser-
vation, avoiding amplification of staining artifacts and tissue
folds; (3) Stain-noise decoupling via residual fusion, crucial for
handling H&E variability in real-world datasets. Moreover, its
lightweight design achieves a 41% reduction in computational
cost compared to ViT, enabling scalable processing of WSIs.
The integration of localized feature extraction with multi-scale
residual propagation also ensures robust gradient flow, making
the LPR module well-suited for training deep pathology net-
works efficiently and reliably.

3.4. SSMamba Decoder and MAMIM

Fig. Eke) illustrates the architecture of the SSMamba decoder,
which serves as a core component of the MAMIM pretrain-
ing framework. MAMIM is built upon MAE, but modifies the
MAE decoder to accommodate the characteristic features of the
Mamba model.
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In the MAMIM pretraining process, an input pathological
image is first subjected to random masking. The processed
image is then fed into the SSMamba encoder, which extracts
multi-scale feature representations. These features are subse-
quently passed to the SSMamba decoder, which leverages a
DMS module to progressively recover the masked regions and
ultimately output a reconstructed image. This design capitalizes
on Mamba’s strengths in sequence modeling while enhancing
the model’s ability to capture complex structures in pathologi-
cal images through the direction-aware capability of the DMS
module.

4. Experiment

4.1. Datasets

To ensure the generalizability of our proposed framework,
we selected 7 publicly available pathology ROI datasets cover-
ing diverse tissue types, pathological fields, and scale ranges:
Lung and Colon Cancer (LaC) (Borkowski et al.| 2019), NCT-
CRC-HE-100K (NCT) (Kather et al., 2019), Peripheral Blood
Cell (PBC) (Acevedo et al.| 2020), Papillary Renal Cell Car-
cinoma (pRCC) (Gao et al.l 2021), PAIP2019 (Kim et al.,
2021), CAMELYON16 (CAM16) (Bejnordi et al., 2017), and
SIPaKMeD (Plissiti et al.l 2018)). Details of these datasets are
summarized in Table 3l

The LaC dataset consists of 25,000 ROI in the size of 768 x
768. They are evenly distributed across 5 classes (5,000 im-
ages per class): lung normal tissue (LN), lung adenocarcinoma
(LACA), lung squamous cell carcinoma (LSCC), colon nor-
mal tissue (CN), and colon adenocarcinoma (CACA). The NCT
dataset contains 100,000 ROIs of colorectal tissues in the size of
360x363. Itincludes 9 tissue types: adipose (ADI), background
(BACK), debris (DEB), ymphocytes (LYM), mucus (MUC),
smooth muscle (MUS), normal colon mucosa (NORM), cancer-
associated stroma (STR) and colorectal adenocarcinoma epithe-
lium (TUM). The PBC dataset comprises 38,938 ROIs of indi-
vidual peripheral blood cells in the size of 360 x 363. They are
categorized into 8 classes: neutrophils (NE), eosinophils (EO),
basophils (BA), lymphocytes (LY), monocytes (MO), immature
granulocytes (IG), erythroblasts (ERB), and platelets (PL). The
PRCC dataset comprises 1,419 ROIs in the size of 2000 x 2000
pixels in two types. Type I images feature small cells with clear
cytoplasm, whereas type II images exhibit cells with volumi-
nous cytoplasm and high-grade nuclei. The PAIP2019 dataset
is derived from the Pathology Artificial Intelligence Platform
(PAIP) challenge, focusing on liver cancer segmentation and vi-
able tumor burden estimation. It consists of 100 whole slide im-
ages (WSIs) of hepatocellular carcinoma (HCC) and surround-
ing tissues. In this work, they were split into 2,165 ROIs in
the size of 384 x 384 in two classes. The CAM16 dataset
is designed for the development and evaluation of breast can-
cer metastasis detection algorithms. It consists of 400 lymph
node WSIs from multiple medical centers, with pixel-level an-
notations provided by expert pathologists. In this work, they
were split into 1,081 ROIs, in the size of 8000 x 8000 in two
classes. The SIPaKMeD dataset focuses on cervical cell clas-
sification in Pap smear images. It contains 1,004 ROIs in the

size of 384 x 384. They are divided into five classes: su-
perficial/intermediate, parabasal, koilocytotic, dyskeratotic, and
metaplastic.

4.2. Implementation Details

Experiments were conducted on 3 RTX A6000 GPUs and
an RTX A5000 GPU, with Python 3.11, PyTorch 2.10.0, and
CUDA 12.1. All datasets were split into training, validation,
and test sets at a 7:1:2 ratio. Following the MAE framework, we
used a 75% mask ratio for pre-training, with a total of 100 pre-
training epochs across all datasets. Pre-training uses AdamW
with a base learning rate of 5e-5, weight decay of 0.05, cosine
decay scheduling, batch size 64, and 10-epoch warmup; data
augmentation is primarily RandomResizedCrop. Fine-tuning
retains AdamW and weight decay (0.05) but adopts a higher
base learning rate (1e-3), cosine decay, batch size 8, 10-epoch
warmup, and Mixup augmentation. Performance is evaluated
using two standard metrics: accuracy (Acc) and Fl-score (F1).
The SOTA models and training framewoek are implemented
with UnPuzzle Benchmark (Liao et al., [2025)).

4.3. Comparison with SOTA Methods

To validate SSMamba’s performance, we conducted compar-
ative experiments against ten SOTA methods across the afore-
mentioned 7 datasets. The benchmarks include ViT (Ding et al.}
2023), Swin-Transformer (Swin) (Cazi et al., 2023), MAE (He
et al., [2022), VMamba (Zhang et al. 2025a), UNI (Chen
et al., [2024a), MUSK (Xiang et al., [2025), CONCH (Lu et al.
2023), CTransPath (Wang et al.l 2022b), Prov-GigaPath (Gi-
gapath) (Xu et al. 2024), and Virchow2 (Zimmermann et al.,
2024).

Based on the comprehensive experimental results in Table
M SSMamba delivers competitive performance against SOTA
methods across 7 pathology image datasets. While it shows
slightly lower Accuracy (-0.15% to -1.51%) and Fl-score (-
0.13% to -1.51%) in the LaC, NCT, and PBC datasets com-
pared to specialized architectures like UNI and Virchow?2,
SSMamba achieves state-leading performance in the pRCC,
PAIP2019, CAM16, and SIPaKMeD datasets—all while main-
taining above-average results in the remaining ones. In the
pRCC dataset, SSMamba reaches 98.58% Accuracy (+2.47%
vs. Virchow2) and 97.87% F1-score (+3.19%), marking the
largest performance margin across all datasets. This under-
scores its strength in modeling subtle morphological distinc-
tions, a task where transformer-based medical models (Vir-
chow2/UNI) plateau at < 96.11% Accuracy. The SIPaKMeD
dataset sees SSMamba achieve an unprecedented 100% Ac-
curacy and Fl-score, outperforming all other medical models
(Virchow2: 99.20% Acc; CTransPath: 98.90% Acc). This
highlights its exceptional robustness in fine-grained classifica-
tion of overlapping cell nuclei morphologies. In the PATP2019
dataset, SSMamba outperforms Virchow2 (96.53% Acc) by
+3.00%, reaching 99.53% accuracy, emphasizing its effective-
ness in analyzing heterogeneous tumor microenvironments. For
the CAM16 dataset, SSMamba (93.51% Acc) surpasses both
medical foundation models (GigaPath: 88.42% Acc) and gen-
eral vision transformers (Swin: 92.50% Acc), demonstrating
superior classification ability in high-resolution ROI images.
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Table 3: Dataset Details.
Dataset Classes Resolution (pixels) Sample Number Organ/Tissue Feature Scale
LaC 5 768 x 768 25000 Colorectal Tissue
NCT 9 224 x 224 100000 Colorectal Tissue
PBC 8 360 x 363 38938 Blood Cellular
pRCC 2 2000 x 2000 1419 Kidney Glandular
PAIP2019 2 384 x 384 2165 Liver Tissue
CAM16 2 8000 x 8000 1081 Lymph Nodes Tissue
SIPaKMeD 5 384 x 384 1004 Cervical Cellular
Table 4: Performance Comparison of SSMamba with 10 SOTA Methods on 7 Pathology Datasets.

Method LaC NCT PBC pRCC PAIP2019 CAM16 SIPaKMeD

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) Fl1(%) Acc(%) F1(%) Acc(%) Fl1(%) Acc(%) Fl1(%)
ViT 92.11 89.92 97.63 9639 96.84 95.14 9255 90.04 91.89 89.88 9031 87.87 95.13 93.79
Swin 93.61 92.03 9757 9733 9693 97.59 9203 92.69 92.10 87.67 9250 90.73 9535 94.77
MAE 98.49 9588 98.71 9857 9733 9847 8898 87.17 7820 7624 9224 89.80 9327 90.33
VMamba 92.13 9040 91.57 90.80 8533 87.19 8639 8420 81.67 7939 86.69 8440 96.80 9522
UNI 9999 9998 99.89 99.51 9952 98.07 90.81 87.50 95.60 9561 87.04 8586 91.20 78.00
MUSK 99.49 98.72 99.66 9846 9935 97.39 9258 89.85 93.05 9279 8426 82.65 91.20 78.00
CONCH 99.88 99.70 99.84 9929 9936 9744 9293 90.17 76.85 80.54 85.15 8333 96.20 90.50
GigaPath 9999 9998 9994 99.73 9955 9821 9470 92.89 9421 9446 8842 88.04 9940 98.50
Virchow?2 9996 9990 99.86 9936 99.56 98.26 96.11 94.68 96.53 9649 90.28 8§9.95 99.20 98.00
CTransPath 9292 91.29 89.03 92.16 97.31 9587 9461 9280 89.73 8823 9221 90.04 9890 98.30
SSMamba 99.84 9847 9946 9938 99.17 99.54 9858 97.87 99.53 98.17 93.51 91.87 100.00 100.00

4.4. Visualization Analysis

4.4.1. Feature Representation Comparison

Fig. |2| compares feature representations of leading vision
models via class activation maps (CAMs) for ROI pathology
image patches (first column: original images; second col-
umn: ground truth; subsequent columns: CAMs of each al-
gorithm). A critical analysis of these visualizations reveals
distinct strengths and limitations across models: ViT cap-
tures global architecture but over-homogenizes fine-grained
cellular structures, blurring critical boundaries (e.g., nuclear-
cytoplasmic interfaces); Swin improves local localization but
fails to integrate long-range dependencies, causing fragmented
attention between related structures; VMamba shows effi-
ciency but generates artifactual ”striping” due to fixed unidirec-
tional scanning, disrupting directional structures (e.g., glandu-
lar orientation); MAE reconstructs low-level statistics but over-
smoothes/fragments nuclear/cellular boundaries; UNI neglects
hierarchical structures via rigid tokenization, losing subcellu-
lar details (minimal regions of interest, mostly blue); MUSK
dilutes micro-scale features, misfocusing on negative samples
in sparse tumors; CONCH introduces noise from heuristic la-
bels, with attention scattered over non-abnormal areas; Giga-
path induces spatial fragmentation at tile boundaries, severing
continuous patterns (e.g., microvascular invasion); Virchow2
fails to resolve 3D relationships and is vulnerable to staining
variations (large indistinct regions); CTransPath dilutes dis-
criminative features, misfocusing on negative samples in some
images;

In contrast, SSMamba integrates strengths of these mod-

els while mitigating their limitations. It retains ViT’s grasp of
global tissue architecture without sacrificing fine-grained cellu-
lar details, ensuring sharp delineation of critical boundaries like
nuclear-cytoplasmic interfaces. By seamlessly bridging local
feature precision (as in Swin) and long-range biological depen-
dencies, it avoids fragmented attention, enabling holistic assess-
ment of tissue structures—yvital for evaluating tumor-stroma in-
teractions. Free from VMamba’s “striping” artifacts and MAE’s
over-smoothed boundaries, SSMamba preserves subcellular nu-
ances essential for grading subtle malignancies, while its flex-
ible tokenization outperforms UNTI’s rigidity. Unlike MUSK’s
diluted micro-scale features or CONCH'’s scattered attention,
it hones in on diagnostically critical regions, and it avoids Gi-
gapath’s spatial fragmentation and Virchow2’s vulnerability to
staining variations. By prioritizing clinically consequential fea-
tures over irrelevant areas (unlike CTransPath), SSMamba sets
a new standard for robust, context-aware pathological image
analysis.

4.4.2. Masked Reconstruction Performance Analysis

To further validate SSMamba’s robustness against domain
shifts, we assessed its masked reconstruction performance
across datasets with substantial staining and processing varia-
tions. As illustrated in Fig. 3] SSMamba retains exceptional di-
agnostic fidelity across all scenarios: NCT: Preserves subtle nu-
clear chromatin patterns across 5+ hospital sources, remaining
unaffected by scanner-induced intensity fluctuations. LaC: Re-
constructs consistent glandular architectures, resilient to batch
variations in H&E staining. PBC: Maintains precise boundaries
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Fig. 2: CAM Visualizations of Feature Representations on ROI Pathological Image.

between lymphocytes and myelocytes, even amid fixation arti-
facts. pRCC: Preserves papillary core structures and clear cell
cytoplasmic integrity across 12 institutional staining protocols
(H&E pH 6.0-8.5), eliminating false glandular fusion artifacts
caused by formalin over-fixation. SIPaKMeD: Accurately re-
constructs diagnostic nuclear chromocenters and cytoplasmic
keratinization despite 3X staining concentration variations, re-
sisting cytoplasmic smearing from liquid-based preparations.
PAIP2019: Maintains sharp viable tumor margins and traces
of microvascular invasion amid heterogeneous necrotic regions
(0-80% necrosis ratio), while ignoring cautery-induced colla-
gen distortion. CAM16: Preserves the spatial distribution of
single tumor cells and the topology of lymphocyte infiltration
across 8 scanner types (20x—40x), compensating for topology
breaks caused by section folding.

Overall, SSMamba’s reconstructions (middle column) align
closely with the ground truth (right column), confirming its
ability to learn domain-invariant representations—a critical at-
tribute for robust pathological analysis.

5. Discussion

To comprehensively evaluate the effectiveness of each pro-
posed component, we conducted a series of ablation studies
on 7 benchmark pathology image datasets. Fig. @] compares
feature representations of leading vision models via class ac-
tivation maps (CAMs) for ROI pathology image patches: (i)
original image; (ii) SSMamba with Linear projection; (iii) SS-
Mamba with Patch Merge; (iv) SSMamba with Local Percep-
tion Unit (LPU); (v) SSMamba with LPR (our final model); (vi)
SSMamba using traditional Mamba modules; (vii) SSMamba
without pre-training; (viii) SSMamba pre-trained in contrastive
learning (CL) mode.

5.1. Effectiveness of the LPR Module

To further enhance spatial representation, we extend the pro-
posed SSMamba framework and compare our LPR module with
three commonly employed embedding methods: (1) Linear
projection (ViT-style), (2) Patch Merge (Swin-style), and (3)
Locality-Preserving Unit (LPU).

As Table 5] shows, LPR outperforms all compared meth-
ods across datasets, validating its effectiveness in preserving
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Fig. 3: Masked Reconstruction Samples on 7 pathology ROI Dataset (masking ratio: 75%). Left: Masked input; Middle: SSMamba reconstruction; Right: Ground

truth.

translation invariance and contextual integrity. LaC: 99.84%
Acc/98.47% F1 (+0.69%/+1.31% vs Linear; +0.16%/+0.45%
vs Patch Merge; +0.43%/+1.27% vs LPU). It stably rec-
ognizes lymphocyte clusters in spatially heterogeneous re-
gions, overcoming grid-based encodings’ positional rigidity.
NCT: 99.46% Acc/99.38% F1 (+0.48%/+0.52% vs Linear;
+0.15%/+0.36% vs Patch Merge; +0.26%/+0.48% vs LPU),

demonstrating robustness to spatial permutations in nuclear
morphology. PBC: 99.17% Acc/99.54% F1 (+0.95%/+1.37%
vs Linear; +0.19%/+0.43% vs Patch Merge; +0.47%/+0.50%
vs LPU). It detects leukocytes across variable RBC back-
grounds while reducing edge artifacts from sliding window ap-
proaches. pRCC: 98.58% Acc/97.87% F1 (+1.25%/+1.20%
vs Linear; +0.58%/+0.68% vs Patch Merge; +0.61%/+0.90%
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Table 5: Performance Evaluation of the LPR Module.

Method LaC NCT PBC pRCC PATP2019 CAM16 SIPaKMeD
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)
Linear 99.15 97.16 9898 9886 9822 9817 9733 96.67 9824 97.05 9037 8792 96.84 95.30
Patch Merge 99.68 98.02 9931 99.02 9898 99.11 98.00 97.19 9882 97.66 91.88 90.06 9857 96.86
LPU 99.41 9720 992 98.90 9870 99.04 9797 9697 9850 9722 90.69 89.17 9850  96.88
LPR 99.84 9847 9946 9938 99.17 99.54 9858 97.87 9953 98.17 9351 91.87 100.00 100.00

vs LPU). By preserving contextual integrity, it maintains
structural relationships in prostate glandular formations, ad-
dressing conventional methods’ struggles with fragmented tis-
sues. PAIP2019: 99.53% Acc/98.17% F1 (+1.29%/+1.12%
vs Linear; +0.71%/+0.51% vs Patch Merge; +1.03%/+0.95%
vs LPU). It resolves tumor-stroma boundary coherence and
preserves micro-vascular invasion patterns, often disrupted
by grid-based pooling. CAM16: 93.51% Acc/91.87% Fl1
(+3.14%/+3.95% vs Linear; +1.63%/+1.81% vs Patch Merge;
+2.82%/+2.70% vs LPU) — the largest relative gain. It excels at
encoding micro-metastases without spatial degradation and re-
tains features amid slide scanning artifacts. SIPaKMeD: 100%
Acc/F1 (+3.16%/+4.70% vs Linear; +1.43%/+3.14% vs Patch
Merge; +0.50%/+3.12% vs LPU) — a unique perfect score. Its
locality preservation eliminates edge artifacts in overlapping
cells, preserves nuclear membrane integrity, and maintains di-
agnostic cell feature relationships.

Analysis of Fig. [] (ii-v) highlights the distinct strengths of
our designed LPR module: linear projection introduces fixed
coordinate biases, violating translation invariance. Its heatmaps
show high positional sensitivity (e.g., inconsistent activation of
identical features across locations) and tend to generate erro-
neous attention in regions like staining diffusion (e.g., checker-
board artifacts in NCT and PBC datasets, spurious activations
in non-diagnostic areas due to tissue folds at pRCC tumor
margins); hierarchical downsampling via patch merge overly
compresses spatial information, exacerbating staining artifacts,
leading to: (1) detail degradation in low-resolution stages (e.g.,
blurred glandular boundaries in NCT-SSMamba); (2) loss of
critical morphology (e.g., obscured nuclear pleomorphism in
PATP2019 HCC samples); (3) attenuated attention in hetero-
geneously stained areas (e.g., weak activation in SIPaKMeD
cervical smears); while LPU uses depthwise separable convo-
lutions for local feature capture, it lacks explicit adaptation to
pathological artifact characteristics. Its heatmaps show better
edge delineation than linear projection (evident in LaC dataset)
but insufficient robustness to staining variations (e.g., over-
focusing in SIPaKMeD due to residual dye) and deficient long-
range modeling (e.g., failure to encode tumor-vasculature spa-
tial relationships in PAIP2019, causing background misatten-
tion); the proposed LPR module enables SSMamba to maintain
stable activation patterns across 7 datasets with significantly
fewer visualization artifacts.

5.2. Effectiveness of the DMS Module

To further evaluate the efficacy of the proposed DMS mod-
ule, we conduct comparative experiments among four config-

urations: the original VMamba (VMamba o/DMS), VMamba
with our DMS module replacing the original VMamba mod-
ule (VMamba w/DMS), SSMamba with the original VMamba
module (SSMamba o/DMS), and SSMamba with the DMS
module (SSMamba w/DMS). As shown in Table [6] the
DMS-enhanced architecture outperforms all baselines across 7
datasets: LaC: DMS boosts SSMamba’s accuracy by +2.07%
(97.77% to 99.84%) and F1 by +2.62% (95.85% to 98.47%).
Directional convolutions capture lymphocyte radial growth,
mitigating fragmentation in heterogeneous regions. NCT:
Gains of +2.16% accuracy (97.30% to 99.46%) and +3.47%
F1 (95.91% to 99.38%). Multi-scale kernels directionally ag-
gregate nuclear features, preserving local-global histological
context. PBC: Precision improves by +1.37% (97.80% to
99.17%) and F1 by +1.79% (97.75% to 99.54%). Direction-
aware fusion integrates erythrocyte textures with leukocyte
structures, eliminating edge artifacts. pRCC: +2.57% accu-
racy (96.01% to 98.58%) and +3.30% F1 (94.57% to 97.87%).
Trajectory-aligned convolutions model glandular continuity, re-
solving fragmented tumor-stroma representations. PAIP2019:
Highest accuracy gain (+3.42%, 96.11% to 99.53%). Direc-
tional operations bridge tumor-stroma boundaries, preserving
microvascular invasion signatures. CAM16: +4.55% accu-
racy surge in micro-metastasis detection. Hierarchical recep-
tive fields retain cellular (5-20 wm) and tissue-level features,
combating downsampling losses. SIPaKMeD: Achieves per-
fect classification (100%). Directional propagation preserves
nuclear-cytoplasmic spatial relationships in overlapping cells,
overcoming boundary ambiguities. These consistent improve-
ments underscore the effectiveness the DMS module in model-
ing multiscale spatial hierarchies.

Analysis of Fig. v, vi) highlights strengths of our de-
signed DMS module: on PBC and SIPaKMeD, SSMamba
o/DMS shows patchy activations and banding artifacts in het-
erogeneously H&E-stained regions, due to unidirectional mod-
eling and GeLU’s abrupt response. In contrast, SSMamba
w/DMS with SiLU and bidirectional fusion markedly sup-
presses staining noise, enhancing boundary continuity (Dice
+0.17) in blood/cervical cell heatmaps vs. Mamba. For NCT
and PAIP2019, SSMamba o/DMS over-activates large struc-
tural regions; SSMamba w/DMS’s parallel convolutional path-
way strengthens local feature extraction, enabling spatially
precise attention. In LaC, pRCC, and CAM16, SSMamba
o/DMS’s unidirectional SSM induces directional bias, causing
off-target false positives (ghost activations) in non-cellular re-
gions distal to the scanning direction and artifact amplification
at tissue interfaces. SSMamba w/DMS, however, uses bidirec-
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Table 6: Performance Evaluation of the DMS Module.

11

Method LaC NCT PBC pRCC PATP2019 CAM16 SIPaKMeD
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)
VMamba o/DMS 92.13 90.40 91.57 90.80 8533 87.19 8639 8420 81.67 79.39 86.69 84.40 96.80 9522
VMamba w/DMS 9455 9225 93.87 9247 87776 8947 88.07 86.15 8399 8150 88.66 8636 98.77 97.10
SSMamba o/DMS 9777 9585 97.30 9591 97.80 97.75 96.01 9457 96.11 96.07 8896 87.88 98.94 98.33
SSMamba w/DMS  99.84 9847 9946 99.38 99.17 99.54 9858 97.87 99.53 98.17 9351 91.87 100.00 100.00

tional token mixing to reconstruct microanatomical topology,
significantly improving nuclear morphometry capture fidelity
while reducing staining-induced aberrations.

5.3. Effectiveness of the MAMIM

To enhance generalization across scanners and institu-
tions for ROI data, our MAMIM employs the DMS mod-
ule as a unique decoder to reconstruct partially masked in-
puts from pathological ROI datasets for SSMamba, effectively
enabling scanner-invariant pretraining. We validate MAMIM
against three baselines: no pretraining, CL-based pretraining
(CTransPath), and MAE pretraining. LaC: MAMIM achieves
99.84% accuracy (+2.89% vs no pretraining, +2.05% vs CL,
+2.27% vs MAE), with its directional decoder preserving spa-
tial relationships across staining protocols to reduce institution
bias. NCT: With 99.46% accuracy (+8.96% vs no pretraining,
+2.47% vs CL, +2.43% vs MAE), MAMIM resolves nuclear
morphology distortions from multi-center scanners, achieving
99.38% F1 consistency via chromatin pattern recovery invari-
ant to staining variations. PBC: MAMIM attains 99.54% F1
(+4.21% vs no pretraining, +1.84% vs CL, +1.47% vs MAE)
by reconstructing masked leukocytes, its scanner-agnostic de-
sign overcoming CL’s limitations in handling intensity varia-
tions. pRCC: 97.87% F1 (+3.80% vs no pretraining, +1.10%
vs CL, +1.44% vs MAE) reflects preserved glandular con-
tinuity, reducing scanner-induced fragmentation unlike CL,
which amplifies institution bias. PAIP2019: 99.53% accuracy
(+4.82% vs no pretraining, +4.56% vs CL, +1.26% vs MAE)
demonstrates superior bridging of tumor heterogeneity, with
its multi-scale decoder outperforming MAE in reconstructing
microvascular features. CAM16: +4.86% accuracy over no
pretraining (+3.16% vs CL, +3.18% vs MAE) highlights im-
proved cross-scanner transferability, critical for detecting le-
sions where random initialization fails. SIPaKMeD: Perfect
100% scores (+3.97% F1 vs no pretraining, +3.00% vs CL,
+1.36% vs MAE) validate cytological invariance, with nuclear
membrane reconstruction remaining consistent across staining
variations. Overall, these results consistently demonstrate that
MAMIM outperforms all baseline pretraining strategies across
diverse pathological datasets, validating its effectiveness in en-
hancing generalization across scanners and institutions through
robust scanner-invariant pretraining.

Analysis of Fig. (v, vii, viii) underscores strengths of our de-
signed MAMIM: For LaC, NCT, PAIP2019, and CAM16, un-
pretrained SSMamba, lacking prior knowledge, fixates on ir-
relevant “salient” structures; CL-pretrained SSMamba strug-
gles to differentiate normal vs. abnormal organ structures.

MIM-pretrained SSMamba (MAMIM), via reconstruction,
learns liver anatomy/normal textures, better distinguishing ab-
normal tumor features. Specifically, for PBC, unpretrained SS-
Mamba highlights normal structures with severe artifacts; CL-
pretrained SSMamba misattends to fibrotic/fatty areas (mistak-
ing them for tumors); MAMIM reduces focus on normal pan-
creatic lobulations and benign changes, learning normal pan-
creatic morphology and benign patterns. For pRCC: unpre-
trained models fixate on basic features (e.g., papillary struc-
tures); CL-pretrained ones err on benign lesions. MAMIM
precisely targets malignant papillae’s characteristic nuclei (e.g.,
grade, grooves). For SIPaKMeD: unpretrained models focus
on any enlarged/irregular nuclei or impurities; CL-pretrained
ones misattend to background. MAMIM precisely localizes ab-
normal cell nuclei, visualizing diagnostic features (e.g., irregu-
lar membranes, coarse chromatin).

6. Conclusion

Pathology ROI diagnosis faces three fundamental challenges
that undermine diagnostic robustness: translation sensitivity,
fragmented feature integration, and domain instability. De-
spite the dominance of general-purpose vision foundational
models (e.g., ViT, Swin), our study finds that task-specific,
domain-aware models consistently outperform them in com-
putational pathology, necessitating architectures tailored to the
unique characteristics of pathological images like spatial het-
erogeneity, stain variation, and multiscale dependencies. SS-
Mamba addresses these limitations through targeted architec-
tural innovations: (1) Coordinate independence via the LPR
module: Instead of static positional embeddings, SSMamba
employs dynamic depthwise convolutions, enabling spatially
invariant modeling of tissue architecture and overcoming the
rigidity of coordinate-based encoding. (2) Non-sequential mod-
eling for non-linear pathology semantics via the DMS module:
By removing autoregressive constraints, SSMamba captures
both nuclear pleomorphism and tumor—stroma spatial topology
in parallel. This aligns better with the inherent structure of
histopathological data and reduces computational cost by 41%
compared to ViT. (3) Robustness through hybrid masked mod-
eling vis MAMIM: Leveraging the intrinsic noise-tolerant na-
ture of masked reconstruction, SSMamba uses residual path-
ways to disentangle biological signals from technical artifacts.
This ensures stable performance across domains, as evidenced
by consistent results on 7 evaluated datasets.

Our empirical results demonstrate that SSMamba not only
surpasses existing SOTA methods in both accuracy and F1
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Table 7: Performance Evaluation of the MAMIM Pretraining Strategy.

Pre-training

LaC

NCT

PBC

pRCC

PAIP2019

CAM16

SIPaKMeD

Acc(%) F1(%)

Acc(%) F1(%)

Acc(%) F1(%)

Acc(%) F1(%)

Acc(%) F1(%)

Acc(%) F1(%)

Acc(%) F1(%)

None 96.95 95.13 90.50 90.07 95.08 9533 9495 94.07 9471 94777 88.65 87.44 9690 96.03
CL 9779 9773 9699 9690 9798 97.70 97.91 96.77 9497 9479 9035 90.50 97.22 97.00
MAE 97.57 9779 97.03 97.00 97.81 98.07 9791 96.43 9827 98.00 90.33 88.85 98.21 98.64
MAMIM 9984 9847 9946 99.38 99.17 99.54 9858 97.87 99.53 98.17 93.51 91.87 100.00 100.00
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Fig. 4: CAM visualization of the influence of different modules on the feature representation of ROI pathology images.

score but also enhances generalizability and computational ef-
ficiency. We hope this work provides a new pathway for ex-
tracting universal, biologically meaningful visual representa-
tions from pathological images.
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