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Abstract. Segmentation is a critical task in computational pathology,
as it identifies areas affected by disease or abnormal growth and is
essential for diagnosis and treatment. However, acquiring high-quality
pixel-level supervised segmentation data requires significant workload
demands from experienced pathologists, limiting the application of deep
learning. To overcome this challenge, relaxing the label conditions to
image-level classification labels allows for more data to be used and
more scenarios to be enabled. One approach is to leverage Class Ac-
tivation Map (CAM) to generate pseudo pixel-level annotations for se-
mantic segmentation with only image-level labels. However, this method
fails to thoroughly explore the essential characteristics of pathology im-
ages, thus identifying only small areas that are insufficient for pseudo-
masking. In this paper, we propose a novel shuffle-based feedback learn-
ing method inspired by curriculum learning to generate higher-quality
pseudo-semantic segmentation masks. Specifically, we perform patch-
level shuffle of pathology images, with the model adaptively adjusting
the shuffle strategy based on feedback from previous learning. Exper-
imental results demonstrate that our proposed approach outperforms
state-of-the-arts on three different datasets.

Keywords: Semantic segmentation · Pathology Image Analysis · Weakly
Supervised Learning

1 Introduction

Accurately locating regions-of-interest (ROIs) is of great importance for patho-
logical diagnosis. Conventionally, pathologists manually screened slides for ROIs
and reviewed these regions for tissues with abnormal appearance [16], which
was time-consuming and exhausting. With the development of deep learning in
computer-aided diagnosis, more and more pathologists implement it as a visual
aid to highlight and segment regions of diagnostic relevance [18]. These models
mostly rely on high-quality pixel-level annotations, which places much burdens
on pathologists. Besides, in clinical diagnosis, we often only have image-level
labels instead of pixel-level annotations, since annotated data is often difficult
to obtain and is typically not open-sourced.

To save time costs and better exploit the data collected from clinical applica-
tions, one approach is to use image-level classification labels to predict pixel-level
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annotations, known as weakly supervised semantic segmentation [5,9,20]. [11,17]
propose sliding patch-based methods to train and predict at the center pixel of a
sliding patch to obtain finer predictions. Pixel-based methods [1,4, 12] typically
apply a FCN with contour separation processing to train and predict at the pixel
level. HistoSegNet [3] is trained on annotated image level of histological tissue
type drawn from different organs to segment on pixel level. The prior informa-
tion, such as thresholds or specific form distributions, is introduced in [14,15,25]
to improve performance for medical image. However, priors are fairly removed
from the diagnosis process of clinical pathology, limiting their applications.

To generate pseudo masks, current methods mostly leverage Class Activa-
tion Maps (CAM) [24] and the related variants [2, 19, 21, 22] to preliminarily
locate the target region based on the image-level label, and then iteratively ex-
pand and optimize the localization region to achieve semantic segmentation.
However, to obatain better segmentation, some characteristics of pathology im-
ages need to be further considered, as the previous methods focus on natural
images: (a) Local features. Factors such as cell size, nucleus-to-cytoplasm ratio,
and chromatin distribution, are crucial components of pathology image features.
Due to their dispersed nature, careful observation of local areas is necessary. (b)
Global characteristics. Features including relative cell size, overall cell orienta-
tion, and consistent spacing, must be analyzed for the entire image as a whole. (c)
Relative instance relationship. The relative instance relationships in pathology
images include both intra-sample and inter-sample relationships. Intra-sample
relationships involve instances of different scales (e.g., cells, cell clusters, and
tissues). They are crucial for clinical diagnosis, as pathologists rely on multi-
scale and multi-angle features rather than single one to make judgments, espe-
cially for challenging pathology images. For inter-sample relationships, instances
across different samples often have potential connections, since they belong to
the same disease. By combining inter-sample instances and allowing information
to interact, models can better explore potential relative instance relationships.
(d) Perturbation. Pathology images are artificially processed, which inevitably
introduces noise, leading to the inconsistency in the distribution of pathology
images corresponding to the same label. All of these factors can impact on the
generation of semantic segmentation masks.

In this paper, we propose a novel shuffle-based feedback learning method
to generate high-quality pseudo masks for weakly supervised semantic segmen-
tation. Specifically, we split the pathology images into patches concerning the
granularity of pathology instances and perform the shuffle process across the
same batch. Our model self-adaptively changes the learning strategy from coarse
to fine by decreasing the patch size and increasing the shuffle ratio of images
throughout the learning process. This allows the model to learn multi-scale in-
stance features, including local, global, and relative relationships. The mixed
and original images are then used to extract activation information, and the
activation region is expanded to generate semantic segmentation masks. In sum-
mary, our contribution can be concluded as the following aspects: (i) We first
propose a novel shuffle-based feedback learning method to further explore in-
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Fig. 1. Overview of the proposed method. The model adaptively adjusts the schedulers
in the left blue box based on the feedback from previous learning. The patch size
scheduler and shuffle ratio scheduler regulate the patch size and shuffle ratio. Then,
relation patches are in-place shuffled across the same batch, maintaining their relative
positions the same in images. Lastly, the mixed and original images are fed into the
Weekly Supervised Segmentation Network for twins’ steps training in the green boxes.

stance relationships in weakly supervised semantic segmentation for pathology
images. (ii) We devise a feedback learning module inspired by curriculum learn-
ing, which makes the model adaptively change the learning strategy with explicit
considerations of the multi-scale characteristics of pathology images and the pre-
vious learning. (iii) Experiments on three datasets illustrate that our algorithm
achieves state-of-the-art performance with only image-level annotations.

2 Method
In the proposed framework, there are three main components including feed-
back learning module, shuffle patches and pixel correlation module, as shown in
Fig. 1. A patch size scheduler and a shuffle ratio scheduler are designed in feed-
back learning module, as shown in the blue box in Fig. 1. With the schedulers,
the model adjusts the patch size and shuffle ratio of the images during training
based on the learning feedback from previous stages to control the degree of
image blending. It enables the model to learn multi-scale pathological features
from coarse to fine granularity, therefore better modeling the intra-sample re-
lationshihps of pathology instances. Then, the model shuffle patches, as shown
in the green and grey boxes in Fig. 1. By regrouping patches in in-place shuffle
strategy, the method can model the local and global features of pathology images
in a better way. The pixel correlation module in the dark green box evaluates
the inter-pixel similarities to assist CAM generation.

2.1 Feedback Learning Module
Schedulers. In the framework, we design a patch-size scheduler and a shuffle
ratio scheduler. In the patch-size scheduler, we provide a pre-defined list of patch
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sizes [pn, pn−1, . . . , p1], where pn > pn−1 > · · · > p1, and pi represents the value
of the ith patch. Different patch sizes represent different scales of pathology
images, and are designed based on the actual size of instances (cells/tissues). For
example, when pi is large, the image is divided according to tissue structures or
cell clusters, while the minimum pi can represent a single cell. For the shuffle
ratio scheduler, We provide a growth factor α, which is used when the model
needs to increase the image shuffle ratio. fi+1 = fi ∗α, where fmin < fi < fmax,
fi represents the current shuffle ratio, fmin and fmax denote pre-set thresholds.
At the beginning of the training, due to the large patch size and low shuffle
ratio, the model learns coarse-grained blended images. Along with the training
process, the patch size decreases and the shuffle ratio increases, allowing the
model to learn finer features. It is worth noting that we only provide schedulers,
and the model itself decides how to select patch size and shuffle ratio based on
learning feedback.
Feedback Learning. Based on the schedulers above, the training model can
adjust the mixing scale to control the learning process according to the feedback
from previous learning. Specifically, let the loss of the current iteration be l,
and the learning threshold is T . When the loss value of the model is less than a
certain threshold, the model has been learned well enough for the current stage,
which indicates the feedback from previous learning is positive. Therefore, the
model picks a smaller patch size in the scheduler and increases the shuffle ratio
with the increasing factor.

pi → pi+1; fi+1 = fi ∗ α ⇐⇒ l < T (1)

Otherwise, the schedule remains unchanged. And T will decrease along with the
training process.

2.2 Shuffle Patches

Let I ∈ RW×H×C represent a pathology image, where W,H,C denote the width,
height, and channel of the images respectively. We first break the image into
patches according to the patch size p regulated by the patch size scheduler,
thus the image can be represented as I = {P0, P1, . . . , Pn}, where Pi ∈ R[p,p,C]

denotes each patch of the pathology image, and p is the patch size of Pi.
Let f ∈ [0, 1] denote the shuffle ratio from the scheduler. We randomly select

m patches in the same position across one batch with m = [n × f ], which are
regarded as relation patches R, and others remained are fixed patches F . Then
the relation patches will be in-place shuffled, while the fixed patches hold their
positions. The shuffle process is represented as:

Pmix,i = M ⊙ PF,i + (1−M)⊙ PR,i, i ∈ n (2)

where ⊙ is element-wise multiplication, F and R are patches from different
images. M denotes a binary mask, serving to assign the two kinds of patches.
When i ∈ R, M = 0, else if i ∈ F , M = 1. It is worth noting that, because the
shuffle of each patch is independent and completely random, patches in the mixed
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image may come from multiple images (more than two). The design introduces
the relationship perception towards different samples. Meanwhile, We use the
same proportion f to blend the labels of these batch samples, which can create
soft label to provide a clear image-wise label.

2.3 Pixel Correlation Module

We employ a Pixel Correlation Module (PCM) module [19] to improve the consis-
tency of the prediction. First, we extract an original CAM from backbone model.
Then, the cosine distance is calculated to measure the relationship between the
adjacent pixels:

f(xi, xj) = σ(
θ(xi)

T θ(xj)

||θ(xi)|| · ||θ(xj)||
) (3)

The improved CAM is generated with the weighted sum of the original CAM:

Yp =
1∑∑

(f(xi, xj))
σ(

θ(XT )θ(X)

||θ(X)||2
)Y (4)

where Y is the original CAM, X is the aggregation of some hidden features, σ(·)
is ReLU function, and θ(·) is 1× 1 convolution layer.

3 Experiment and Results

3.1 Datasets and Implementation Details

Datasets. Three datasets are explored in this paper. The ROSE dataset [23]
contains fast-stained cytopathological images of pancreatic tissues based rapid
on-site evaluation (ROSE) technique, including 1,773 pancreatic cancer images
and 3315 normal pancreatic cell images. Both the classification labels and seg-
mentation results are confirmed by senior pathologists. The WBC dataset [10]
includes 301 basophils, 1,066 eosinophils, 3,461 lymphocytes, 795 monocytes and
8891 neutrophils. The MARS dataset 1 contains 1770 images from the first round
of SEED challenge, including 574 normal gastric images, 403 typical tubular ade-
nocarcinoma, and 793 typical mucinous adenocarcinoma.
Implementation Details. The experiments are fairly done with a same Ubuntu
server (Intel(R) Xeon(R) Platinum 8350C CPU and 2 Nvidia RTX3090 GPU).
The PyTorch version is 1.10.0, the CUDA version is 11.3 and the python version
is 3.8. In each experiment, only one GPU is used. We employed ResNet [7] as the
backbone model for training pseudo segmentation mask generator. Multi-label
soft margin loss is adopted for network training. It is trained with optimizer
for 8 iterations, with a batch size of 4, an initial learning rate of 0.0001 for
ROSE and WBC, 0.00009 for MARS. All datasets are randomly separated into
training, validation and test sets following a ratio of 7:1:2. For the evaluation
metrics, we adopted the widely used Dice score = 2TP/(2TP + FP + FN) and
IoU = target∩prediction/target∪prediction as in [3,6,8,13]. The higher scores
means the better performance for both of the metrics.
1 https://www.marsbigdata.com/competition/details?id=21078355578880
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Table 1. Dice score (%) and IoU (%) of methods for weakly supervised semantic seg-
mentation. Ours w/o FL denotes the proposed method without the feedback learning.
The best results are in bold.

Dataset Method Dice Score (DSC) [%] IoU [%]
Subtype1 Subtype2 Average Subtype1 Subtype2 Average

ROSE

CAM 39.1 52.5 45.8 32.5 38.5 35.6
SEAM 35.4 69.6 52.5 28.9 58.3 43.7
CPN 42.7 62.9 50.1 33.2 51.4 42.3

Ours w/o FL 47.6 63.3 55.4 39.9 50.8 45.4
Ours 51.4 70.0 60.7 42.4 58.1 50.2

WBC

CAM 12.1 30.7 28.3 7.0 21.3 21.0
SEAM 39.5 39.0 29.8 28.9 27.2 20.4
CPN 45.7 36.3 31.1 33.2 24.1 22.1

Ours w/o FL 41.0 35.2 34.6 31.6 23.7 26.6
Ours 60.9 49.2 41.5 41.4 32.3 29.4

MARS

CAM 56.9 57.7 38.2 44.0 42.9 29.0
SEAM 64.4 56.8 40.4 51.0 42.1 31.0
CPN 60.2 54.1 39.8 47.5 41.8 30.8

Ours w/o FL 62.8 58.1 40.3 49.6 43.7 31.2
Ours 64.5 57.2 40.6 51.1 42.6 31.3

3.2 Experimental Results

Utility Analysis. The propsed method is compared with other methods in-
cluding CAM [24], SEAM [19] and CPN [22]. The result is shown in Table 1.
Subtype1 includes the negative samples in ROSE, eosinophils in WBC, and tubu-
lar adenocarcinoma in MARS, while Subtype2 denotes positve samples in ROSE,
monocytes in WBC, and mucinous adenocarcinoma in MARS. The selected sub-
types are the most related to clinical diagnosis. Average is the overall mean value
of the three datasets. Table 1 shows that our proposed method achieves the best
performance, with DSC 60.7% and IoU 50.2% on ROSE, DSC 41.5% and IoU
29.4% on WBC, DSC 40.6% and IoU 31.3% on MARS. In addition, it can be
observed that our proposed method performs well on majority of subtypes, par-
ticularly on the eosinophil (Subtype1) in WBC, achieving a remarkable improve-
ment of 34.4% for IoU and 48.8% for DSC compared to the baseline. To further
validate the effectiveness of the Feedback Learning Module, we fix the patch size
to 32 and the shuffle ratio to 0.3, and the results are shown in Ours w/o FL.
The method without the Feedback Learning Module still outperforms the base-
lines, which indicates that the shuffle module contributes to segmentation and
can better model local instances and global information by regrouping patches.
However, with the Feedback Learning Module, the model’s performance signifi-
cantly increases, with up to 6.9% for DSC and 4.8% for IoU. This demonstrates
the effectiveness of feedback learning, which allows the model to adaptively ad-
just the shuffle strategy based on the feedback learned previously and better
extract features of pathology images. Meanwhile, by continuously adjusting the
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Fig. 2. Visualization of crafted examples from different methods. The first row is the
original images from ROSE, WBC and MARS. GT represents the ground truth seg-
mentation masks. Other rows are results of weakly supervised methods. The areas with
inaccurate predictions are marked with yellow circles.

patch size and shuffle ratio during the shuffle process, the model can learn multi-
scale pathological features from coarse to fine granularity, which improves model
performance.
Visualization. We also visualize segmentation results of different methods in
Fig. 2. It shows that our proposed method performs the best in most segmenta-
tion masks. Baselines tend to highlight and segment regions that contain some
irrelevant pixels. It indicates that the previous methods do not have enough ca-
pacity to eliminate the interference of perturbation in pathology images, as men-
tioned in Section 1. By shuffling and regrouping patches, the proposed method
reduces the purtabation information in the mixed images, thereby forcing the
model to learn the features of the target instance. Based on the utility analysis
and visualization result, the proposed method achieves pixel-level annotations
of pathology images by leveraging only image-level classification labels.

3.3 Ablation Study

To explore the effects of different settings in shuffle process and feedback mod-
ule, we conduct the experiments as shown in Table 2. All variants can steadily
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Table 2. IoU (%) of variants with different settings in shuffle and feedback module.
Group denotes the shuffled patches are from the same image. Back represents that when
the feedback from previous learning is negative, model steps backward to the previous
shuffle schedulers. In our proposed method, the shuffled patches are independent, and
shuffle schedulers remain the same when feedback is negative.

Method ROSE WBC MARS
Negative Positive Average Eosino Mono Average Tubular Mucinous Average

Baseline 32.5 38.5 35.6 7.0 21.3 21.0 44.0 42.9 29.0
Ours-Group 34.7 59.8 47.2 39.3 30.0 28.4 51.0 42.5 31.2
Ours-Back 39.2 58.0 48.5 40.8 32.3 29.1 51.0 42.6 31.2

Ours 42.4 58.1 50.2 41.4 32.3 29.4 51.1 42.6 31.3

boost the baseline performance on all benchmarks. In addition to our method
with the best performance, other variants lift the baseline result up to 11.6% and
12.9% for Group and Back respectively. For positive samples in ROSE, shuffling
all patches together performs better than independent mixing strategy, with an
improvement of 1.7%. Although all variants are effective, the overall performance
of Group and Back is not the best. Instances across different samples often have
potential connections, as they belong to the same disease. However, in the Group
strategy, all relation patches from one image are shuffled as a group, which may
fail to thoroughly combine inter-sample instances and result in insufficient learn-
ing of potential relative instance relationships, negatively affecting performance.
As for the Back strategy, since the model needs to return to the previous mixing
strategy when the feedback is negative, it is highly likely that the model cannot
learn the mixed samples at a fine-grained level. In extreme cases, throughout the
training process, only the largest patch size and the smallest shuffle ratio can be
implemented to mix images. The decrease in model performance when using the
Back strategy indicates that a multi-scale mixing strategy from coarse to fine is
necessary to assist the model to learn the features of instances of multi-scales
and intra-sample relations. Additionally, poor performance may be attributed
to redundant learning and overfitting when stepping backward to the previous
shuffle schedulers.

4 Conclusion

In this paper, we propose a novel shuffle-based feedback learning method for
weakly supervised semantic segmentation on pathology images. By shuffling and
regrouping patches containing instances, the model can better mine local and
global features of pathology images. Additionally, the model adaptively adjusts
the learning strategy through feedback, enabling multi-scale learning of patho-
logical features and instance relationships. On three datasets, our methods signif-
icantly outperforms other weakly supervised methods, which achieves pixel-level
annotations with only image-level labels. Our next plan is to keep exploring more
effective weakly supervised segmentation methods for 3D medical images.
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