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Abstract

Pathological whole slide images (WSIs) are pivotal in can-
cer diagnosis, but their gigapixel scales and complex het-
erogeneity make the manual review slow and may lead
to inconsistent conclusions. Deep learning studies are
therefore applied yet three obstacles persist in WSI anal-
ysis: (i) weak supervision from slide-level labels without
region-level guidance, (ii) locally homogeneous yet glob-
ally heterogeneous tissue that complicates spatial reason-
ing, and (iii) cross-magnification patterns that call for ef-
fective multi-scale pattern modeling. Existing architectural
innovations’ improvements remain limited and inconsistent
across the benchmarking datasets. The recent augmenta-
tions (e.g., CutMix) draw new insight but only partially ad-
dress these issues and introduce label-irrelevant supervi-
sion signals. We propose SlideMix, a model-agnostic mul-
timodal augmentation framework for WSI backbones that:
(1) employs a VLM-based Visual-language Adaptive Re-
gion (VAR) selector to mitigate weak-label noise by pri-
oritizing diagnostically relevant regions, (2) performs In-
place Tile Shuffling (ITS) to balance local homogeneity with
global heterogeneity without breaking slide context; and (3)
integrates a multi-factor, loss-driven, online Curriculum-
Learning Feedback (CLF) scheme for progressive cross-
scale representation learning. Across 11 WSI benchmarks,
SlideMix consistently improves accuracy and generaliza-
tion over strong state-of-the-art backbones. The extensive
experiments highlight SlideMix as a simple, plug-and-play
route to more robust and scalable digital pathology models.
The project will be open-sourced.

1. Introduction

Pathology diagnosis serves as the gold standard for cancer
diagnosis, relying on microscopic image interpretation to
ensure accurate disease identification and treatment plan-
ning [14]. In modern digital pathology, tissue biopsies are
routinely digitized into gigapixel-scale Whole Slide Images
(WSIs), which preserve rich spatial details and multi-scale
tissue features. However, their massive size makes manual
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Figure 1. Visualization of an augmented example. Compared to
other mixing-based methods, SlideMix accurately identifies tile
and instance boundaries. It further distinguishes effectively be-
tween negative and positive samples.

review both labor-intensive and dependent on highly spe-
cialized expertise, often leading to inconsistencies and vari-
ability in diagnostic outcomes [18].

Deep learning techniques have been increasingly
adopted to assist in WSI analysis by automatically identify-
ing and categorizing critical histological patterns [35, 41].
Recent methods currently employ Multiple Instance Learn-
ing (MIL), a two-stage framework designed to overcome
GPU memory limits imposed by gigapixel-scale slides [31].
Specifically, in the first stage of MIL, WSIs are divided
into smaller tiles (e.g., 224 x 224 pixels from a 100, 000 x
80, 000-pixel WSI), and encoded into feature embeddings
using a tile-level foundation model (e.g. UNI [7]). In the
second stage, the tile embeddings are aggregated into bags
to produce slide-level predictions with a slide-level model
(e.g. TransMIL [28]) [40, 42]. Although practical, the in-
herent complexity and multi-scale nature of WSIs continue
to challenge existing models, particularly in their ability
to effectively integrate cross-scale information [35]. Three
core challenges can thus be identified:

1) Weak supervision from scarce fine-grained anno-
tations [13]. Unlike natural images, only a small frac-
tion of regions within a WSI (often < 1%) are label-
relevant. This extreme imbalance between informative and
non-informative regions greatly complicates the learning
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Figure 2. Overview of the MIL pipeline integrated with SlideMix. (a) Two WSIs from the same dataset are selected, tiled, and embedded
into feature vectors for efficient computation. (b) The corresponding low-resolution WSIs are input into a fine-tuned VLM, which identifies
label-relevant regions for mixing. (c) Coordinates of the selected candidate regions are passed to the data augmentation module, where
the embedded tiles from stage one of MIL are shuffled in place according to three adjustable parameters N, Tpca, and P provided by
the CLF, creating a new mixed sample. (d) The mixed sample is then processed by another VLM to generate a soft mixed label. (e) This
new sample—label pair is fed into the tile sampler and subsequent training module. (f) Finally, the training loss is used to update the three
aforementioned CLF parameters, enabling the ITS to automatically adjust the difficulty of the mixed samples throughout training.

of discriminative features, as irrelevant tiles dominate the
training process and weaken label-feature alignment.

2) Spatial modeling impaired by local homogeneity and
global heterogeneity [42]. Pathological structures exhibit
strong local continuity but substantial global diversity. This
dual characteristic complicates spatial reasoning, as mod-
els must simultaneously preserve fine-grained local consis-
tency while capturing long-range dependencies across the
entire slide—a challenge that becomes increasingly pro-
nounced with larger WSI dimensions.

3) Multi-scale nature against limited feature fusion
capability [8]. WSIs contain features spanning multiple
scales, from cellular to organ-level structures, and different
diagnostic tasks emphasize distinct scales. For instance, tu-
mor purity regression depends on global contextual under-
standing, while EGFR mutation prediction demands precise
modeling of cellular morphology.

To address these challenges, prior studies have explored
architectural innovations [8, 15] and data augmentation
methods [11, 25, 29]. However, these approaches often
overlook key properties of pathological images (Fig. 1), in-
cluding their multi-scale nature and severe label imbalance
caused by large proportions of irrelevant regions. More-
over, most augmentation techniques remain static, limiting
adaptability across diverse WSIs and tasks.

To this end, we propose SlideMix, a novel multimodal
data augmentation framework for MIL-based WSI analy-

sis (Fig. 2). SlideMix integrates a Visual-Language Model
(VLM)-guided region selector, an in-place tile shuffling
mechanism, and an adaptive curriculum feedback loop. To-
gether, these components address the aforementioned chal-
lenges through three key innovations:

1) We propose a VLM-based Adaptive Region (VAR)
Selector that employs Retrieval-Augmented Generation
(RAG) to retrieve domain-relevant knowledge and identify
diagnostically significant ROIs at the lowest WSI scale, mit-
igating weak supervision effects.

2) We design an efficient In-place Tile Shuffling (ITS)
module that mixes tile embeddings between WSIs using
ROI coordinates from the VARS, balancing local homo-
geneity and global heterogeneity. A VLM generates soft
labels from the mixed WSIs to create new training data.

3) We introduce a multi-factor Curriculum Learning
Feedback (CLF) module that adaptively adjusts the shuf-
fle ratio, PCA similarity threshold, and shuffle granularity
in the ITS module based on loss evaluation, enabling pro-
gressive cross-scale feature learning.

Experimental results show that SlideMix improves per-
formance over 8§ pathological tasks across 10 state-of-the-
art WSI models on 11 pathological WSI datasets with
20,523 WSIs, demonstrating its robustness and adaptability.
By providing new insights into multimodal feature regroup-
ing, SlideMix improves model generalization and diagnos-
tic accuracy in digital pathology applications.
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2. Related Works
2.1. Data Augmentation

Data augmentation is a cornerstone technique in deep learn-
ing, designed to enhance model generalization and robust-
ness by artificially expanding the training dataset. For
natural images, common methods include simple geomet-
ric and color transformations, such as flipping, rotating,
and color jittering [6]. However, these generic augmen-
tations often fail to capture the unique and complex char-
acteristics of pathological images. Consequently, domain-
specific augmentation techniques have been developed.
Early pathology-specific methods operated at the tile-level,
including stain normalization [11] and the generation of
synthetic artifacts using GANs [27] or latent-space [24]
models. Although more relevant to pathology, these meth-
ods overlook the broader spatial context and multi-scale fea-
tures inherent in a WSI. More recent methods have shifted
toward feature-level augmentation in the second stage of
MIL to better model spatial relationships. For instance,
Z-Order sampling [25] processes tiles in Z-order to pre-
serve the smallest spatial distance between the tiles, encour-
aging the model to learn spatial dependencies. However,
such methods remain label-agnostic, applying uniformly
across the entire WSI, and inadvertently mixing large label-
irrelevant regions with the few diagnostically critical ones.
This introduces substantial noise and hinders the model’s
ability to learn discriminative features.

2.2. Visual Language Models

Visual-Language Models (VLMs) have demonstrated re-
markable capabilities in bridging vision and natural lan-
guage, enabling complex reasoning that requires multi-
modal understanding[3, 39]. These models are often pre-
trained on large datasets of image-text pairs and excel at
zero-shot generalization for tasks such as image classifica-
tion, object detection, and visual question answering. In the
medical domain, VLMs are increasingly applied to inter-
pret complex medical imagery by leveraging associated tex-
tual information, such as clinical notes or pathology reports
[19, 32]. Their ability to ground textual concepts within vi-
sual data makes them particularly promising for localizing
ROIs in WSIs. However, most pathology applications of
VLMs have focused on direct diagnosis or report genera-
tion. In contrast, our approach uses a VLM not as a direct
diagnostic tool, but as an intelligent guidance mechanism.

2.3. Curriculum Learning

Curriculum learning is a training strategy inspired by hu-
man cognition, in which models are presented with train-
ing examples in a structured order [2]. The model first
learns simpler concepts and then progressively tackles more
difficult ones, which facilitates faster convergence and im-
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Figure 3. The proposed VARS: a) The task label L and a visual-
language model (VLM) region prompt P are sent to a retrieval-
augmented generation (RAG) system R to retrieve the top-K rel-
evant medical data sources D from PubMed D. b) The WSI S at
lowest magnification is processed by the visual encoder G, of the
modified Gemini model Gemys to extract visual features ', which
are partitioned into large regions. c) F', L, and D are fused via
the multimodal connector Gy, within Gems. d) Gemini predicts
outcomes for each region, while the coordinate generator G, pro-
poses coordinates C for potential regions of interest (ROIs).

proved performance. However, due to the complex and het-
erogeneous nature of WSIs, defining an effective curricu-
lum in computational pathology is challenging. Previous
WSI data augmentation methods applied fixed augmenta-
tion rules throughout training [25], failing to adapt to the
model’s evolving learning state or to the varying complex-
ity of different WSIs and diagnostic tasks.

3. Methods

3.1. Data Pre-processing and Tile Embedding

A WSI S is first loaded at a target microns-per-pixel (mpp)
resolution, then partitioned into a non-overlapping grid of
tiles {T;;} of a corresponding size T, (Fig. 2a). A two-
stage filtering protocol is employed to ensure the quality of
the selected regions. It first discards tiles with tissue cov-
erage below a predefined threshold (e.g., < 50% of the tile
area), then removes tiles where the pixel variance falls be-
low a quantitative cutoff (e.g., Var(I) < 0.01 , where I
represents the pixel intensity normalized to the [0,1] range.).
This ensures only valid tiles are retained for the down-
stream. Following pre-processing, each filtered tile is em-
bedded into a dense, semantic feature vector (Fig. 2a) using
a pathological foundation model (e.g., UNI [7]). This em-
bedding process boosts both training efficiency and perfor-
mance of the slide-level model (e.g., ABMIL [15]).

3.2. VLM-based Adaptive Region Selector

To dynamically select the label-related regions in WSIs,
we propose VLM-based Adaptive Region Selector (VARS)
(Fig. 3). Instead of conventional static selectors, VARS dy-
namically analyzes the WSIs, proposing the coordinates of

CVPR
#11782

167
168
169
170
171
172
173

174

175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191

192
193
194
195



CVPR
#11782

196
197
198
199
200
201
202
203
204
205

206

207
208
209
210
211

212

213
214
215
216

217

218
219

220

221
222
223

CVPR 2026 Submission #11782. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

= b) — c)
= s = W
Sz m 3 ..»D—) Y L [
$ auar S £ 3 MwEEE
P = = bl
S S -> o
E Camm” 7% - an
S B )I = I 13
& @ < il B
Reference Image = -l S @
= 3 -
< . = R
I § Sopes
s g = - N 1%
‘3 Ze-ln E § = g 4
£ [z (7] £ . | S
: 5 |ou==mE < 2 wel BE™
WMoving S |"isapm | S o
ovingImage & — S Similartiy > Tpc lMixedWSI
™ M Teca TP @
Loss-Driven Update Method (i Training
Adjust Parameters (N,Tpca,P) Module

Figure 4. The proposed CLF module dynamically adjusts three
schedulers based on training loss [ and threshold 77,ss. a) Shuffie
Granularity (V) controls shuffling region scale. b) PCA similarity
threshold (T'pc 4) governs feature similarity between tiles selected
for shuffling. c) Shuffle Ratio (P) sets the proportion of shuffied
tiles. These updated parameters are then passed to the ITS module
to configure the next augmentation.

the regions related to the labels. These proposals signifi-
cantly enhance the impact of the downstream shuffling pro-
cess. In VARS, we integrate a VLM, Gemini [30], with a
Retrieval-Augmented Generation (RAG) system.

In a single augmentation process, two VARS will handle
two WSIs from the same dataset simultaneously (Fig. 2b).
In a VARS, a WSI S is loaded at the lowest magnification
level (highest mpp) for efficiency, then passed into the vi-
sual encoder G, of the modified Gemini Gem; to generate
the visual features F":

F=G,(9) (1)

Accordingly, the task labels L (e.g., OS Months: 36.5) of
this WSI and a VLM prompt P (e.g., “Identify key patho-
logical regions in this WSI.”) are sent together into RAG R.
It allows Gemini to retrieve knowledge from the PubMed
database D [5] in real-time, enhancing its performance:

D =Rop(L, P) )

After that, the multimodal connector G, of Gemy; first fuses
F, L, and D. This combined representation is then passed
to the predictor G, (also of Gemg) to propose the task-
specific regions coordinates C"

C:GP(Gm(FaLaD)) (3)

The result C' guides the downstream augmentation modules
to apply shuffling only to the selected meaningful regions.

3.3. Curriculum Learning Feedback Module

To enable gradual cross-scale feature learning, we imple-
ment the Curriculum Learning Feedback (CLF) module
(Fig. 4). It dynamically adjusts the difficulty of the data

augmentation in the downstream ITS module based on the
model’s performance. In CLF, the curriculum starts with
simple augmentations and progressively increases the dif-
ficulty by three schedulers controlling shuffle granularity,
PCA similarity threshold, and shuffle ratio. The difficulty is
set by comparing the model’s current training loss ! against
a performance threshold 7;,s.

Shuffle Granularity (V): This scheduler determines the
feature scale the model learns to recognize. It first groups
tile embeddings into different sizes, denoted as IV x IV, The
curriculum starts with large N (e.g., 16 x 16), a relatively
easy task that lets the model learn the coarse-grained fea-
tures (e.g., the boundaries between different tissues). It then
gradually decreases N in the sequence of [Ny, N1, ..., N, ],
where N;;11 < N;. In the end, the model will learn from the
most fine-grained patterns (e.g., the features inside a cell).
PCA Similarity Threshold (Tpc4): This scheduler deter-
mines the feature similarity the model learns to recognize.
Tile embeddings close in PCA space are also close in label
space [22]. We define the distance PC' A (e;, ;) between
the principal components of two tiles e; and e; as:

PCAp(ei,ej) = [PCA(e;) — PCA(e;) | 4)

To ensure a consistent difficulty scale, we min-max

normalize this distance to [0,1] using the statistics

(PCAin, PCA,q,) from the entire training set D:
PCAA — PCAnin

o
PCAS = PCA, oz — PCAin )

A threshold Tpca € [0,1] constrains the shuffling: a
tile pair can be shuffled only if PC' A\ (e;,¢j) < Tpca.
The curriculum starts with a relatively high Tpc4 (allow-
ing dissimilar tiles to be shuffled), then gradually decreases
the PCA similarity threshold, [Tpcao, ..., TPca,n], Where
Tpca,i+1 < Tpca,. Atthe end, the model is forced to
learn fine-grained differences, as only the most similar tiles
are permitted to be shuffled.

Shuffle Ratio (P): This scheduler determines the feature
integrity the model learns to recognize. It controls the shuf-
fle ratio, denoted as P € [0, 1]. The curriculum starts with a
low P, a relatively easy task that lets the model learn from
relatively intact features (e.g., 90% integrity). It then grad-
ually increases P in the sequence of [Py, Py, ..., P,], where
P; 11 > P;. In the end, the model will learn from the highly
fragmented features.

The parameters of all three schedulers are updated at the
end of each training epoch. We implement the loss-hold
strategy as the update rule. Let ®; = (P;, N;, Tpca,;) rep-
resent the curriculum parameters at epoch i. The parameters
for the subsequent epoch ©, 1 are:

(Pit1,Nit1, Trca,iv1) ifl < Tioss
O = ) (6)
O; otherwise
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Figure 5. The ITS module operates as follows: a) a pair of embed-
ded WSIs are provided and assigned as ‘reference’ and ‘moving’;
b) each WSI is segmented into biological objects approximated by
convex hulls; c) the reference WSI is enclosed within its minimal
bounding box, and the moving WSI aligns to maximize overlap;
d) overlapping regions are shuffled based on ITS configuration and
CLF parameters; and e) soft labels for the mixed image are gener-
ated using a VLM, forming a new training sample.

This ensures difficulty only escalates after the model mas-
ters the current difficulty level.

3.4. In-place Tile Shuffling Module

To dynamically shuffle tiles and generate corresponding
soft labels, we introduce the In-place Tile Shuffling (ITS)
module (Fig. 5). It dynamically moves instances in a WSI
pair to create the maximum overlaps for better shuffling,
and generate soft-labels on the augmented WSI with a VLM
to guarantee the accuracy of the labels.

The process starts with a input raw WSI pair from ITS,
whose roles are determined as the static reference WSI (.S,.)
and the moving WSI (S,,,).

To create the maximum overlaps for a meaningful WSI
augmentation, we align the biological structures of .S, to
S, before shuffling. The spatial layout of a WSI S is repre-
sented as a set of tile coordinates 7' C Z2. T is partitioned
into disjoint, connected components {z1, 29, ..., 2, }, where
each z; corresponds to a distinct biological structure (e.g., a
contiguous tissue section):

n
T:U% where z; N z; = O fori # j @)
i=1
Each component z; is treated as an independently movable
object. We seek an optimal set of 2D translation vectors
© ={64,...,0,,} for S,,’s components (z,, ;) to maximize
the spatial overlap with S,.’s coordinates 7’

<O (Zm’i + 0@)) NT,

i=1

O* = argmax
e

®)

Directly optimizing this objective on millions of tiles is
computationally prohibitive. To create a tractable problem,

we approximate each tissue component z; with its convex
hull Conv(z;). A standard optimizer then solves for the
translations ©* that align the convex hulls. Once found,
these optimal offsets are applied to the original tile coordi-
nates of S, to produce an aligned WSI S,,.

The shuffling process occurs within the aligned, over-
lapping region T;- N T},, in .S,. The coordinates of tile em-
beddings from S, and S, are randomly shuffled due to the
configurations (P, N, Tpc 4) from ITS. This shuffled WSI
S, contains a semantically coherent fusion of tissue struc-
tures from both S, and S,,,.

We then integrate CONCH [21], a pathological VLM,
with our RAG system as a soft-labeler to generate the cor-
responding soft labels L. Similar to the Gemini in VARS,
CONCH sends the labels and prompts to the PubMed
database and retrieves medical knowledge for assistance.
The CONCH VLM uses a different embedding system, so
the same mixed image is re-recalculated with different tile
embeddings only for soft-labeling.

3.5. Slide-level Feature Modeling

Augmented WSI S, and labels L, are passed to the slide-
level backbone (e.g., TransMIL [28]) to generate the final
slide-level predictions for different downstream tasks, fol-
lowing the conventional MIL pipeline. At the end of the
epoch, the validation loss is sent back to CLF to adjust the
parameters for the next augmentation.

4. Experiment

4.1. Datasets and Downstream Tasks

To demonstrate its effectiveness and generalizability, we
evaluated SlideMix on 11 datasets across eight downstream
tasks covering diverse diagnostic scenarios (Fig. 6). The
PANDA [4] dataset with the Gleason Score task assesses
prostate cancer aggressiveness, while CAMELYON16 [1]
with the Breast Metastasis task classifies lymph nodes
as normal or tumorous. IMP-CRS-2024 [23] with the
CRC-Tumor task identifies tumor tissues in colorectal im-
ages. The TCGA [10] datasets cover multiple cancer
types and tasks: TCGA-Lung performs Cancer Subtyp-
ing, distinguishing lung cancer variants; TCGA-BLCA
performs Cancer Staging, assessing bladder cancer pro-
gression; TCGA-UCEC and TCGA-CESC perform Can-
cer Grading on uterine and cervical tissues, respectively,
determining tumor differentiation levels; TCGA-UCS and
TCGA-UVM perform Histological Diagnosis, classifying
uterine and uveal tissue subtypes based on morphology; and
TCGA-BRCA and TCGA-GBM perform the OS-Months
task, predicting patient survival time in months from breast
and brain tissue morphology, respectively.
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Table 1. Benchmarking SlideMix Against SOTA Augmentation Methods With ABMIL.

PANDA CAMELYONI16

IMP-CRS-2024 TCGA-Lung TCGA-BLCA TCGA-UCEC TCGA-CESC TCGA-UCS TCGA-UVM TCGA-BRCA TCGA-GBM

Method
Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Corr. Corr.
Baseline 75.9 93.7 95.2 71.6 484 67.5 54.4 583 62.5 0.449 0.614
MixUp 76.3 94.1 954 72.1 49.2 68.1 54.8 59.1 63.2 0.461 0.625
CutMix 76.8 94.5 95.6 725 49.7 68.6 552 59.8 63.8 0.472 0.628
CutOut 752 93.1 94.8 712 47.8 66.9 539 575 61.8 0.438 0.608
ResizeMix 71.1 94.8 95.8 72.9 50.1 69.1 55.6 60.3 642 0.478 0.632
PuzzleMix 76.6 94.3 95.5 723 495 68.4 55.0 595 63.5 0.467 0.627
SlideMix 77.2 94.9 95.8 73.8 51.6 69.8 55.3 66.7 68.8 0.521 0.637
Table 2. Impact of SlideMix on SOTA MIL Backbones Performance (Larger values in bold).
PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung TCGA-BLCA TCGA-UCEC TCGA-CESC TCGA-UCS TCGA-UVM TCGA-BRCA TCGA-GBM
Method Acc. [%] Acce. [%] Acc. [%] Acc. [%] Ace. [%] Acce. [%] Acce. [%] Ace. [%] Acc. [%] Corr. Corr.
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours
SlideAve 66.7 681 69.6 71.2 923 93.2 751 746 511 522 683 696 526 526 583 625 750 719 0529 0.541 0.539 0.556
SlideMax 625 642 953 94.6 93.1 94.1 757 751 538 549 692 704 474 491 417 458 312 375 0520 0514 0463 0485
ABMIL 759 772 937 94.9 95.2 95.8 71.6  73.8 484 51.6 67.5 69.8 54.4 553 583  66.7 625 68.8 0449 0.521 0.614 0.637
CLAM 760 768 734 74.7 929 93.7 722 732 500 495 642 658 544 526 583 583 688 719 0537 0.551 0283 0.308
DSMIL 785 78.1 86.1 87.3 94.6 954 734 743 568 559 717 708 509 52,6 583 633 625 656 0532 0.548 0509 0.528

TransMIL 76.2 758 937 94.3 95.2 95.9 734 741 46.6 48.4
SETMIL 782 780 941 93.8 95.6 95.5 758 760 573 57.1
DTFD-MIL 789 787 948 94.5 95.9 96.0 852 850 581 58.3
GigaPath 779 785 845 85.8 94.9 95.1 75.1 757 522 53.8
MambaMIL 78.6 784 945 94.7 95.7 95.6 763 765 589 58.7

69.2 68.3 509 526 667 708 562 594 0504 0519 0.648 0.641
70.5 70.6 55.1 552 689 691 71.8 720 0562 0560 0.625 0.627
71.2 71.0 558 555 703 701 725 726 0574 0572 0.638 0.635
68.3 69.2 509 526 500 542 562 594 0.636 0.629 0.618 0.632
70.8 71.0 547 545 695 698 731 733 0568 0.566 0.631 0.633

o Number of Imagfg (Log Scale)

PANDA (10616)
Task: Gleason Score

IMP-CRS-2024 (5333)
Task: CRC-Tumor
TCGA-BRCA (1098)
Task: 0S-Months

TCGA-LUNG (1043)
Task: Cancer Subtyping
TCGA-GBM (617)

Task: OS-Months

TCGA-UCEC (560)
Task: Cancer Grading

_ Organ / Location

TCGA-BLCA (412) N Uterus
Task: Cancer Staging mm Eye (Uvea)
CAMELYON16 (400) B Cervix
Task: Breast Metastasis_ B Lymph Node
TCGA-CESC (307) I Bladder
Task: Cancer Grading Brain
TCGA-UVM (80) B Lung
Task: Histo-Diagnosis Breast
TCGA-UCS (57) W Colorectal

Task: Histo-Diagnosis Prostate

Figure 6. Summary of implemented datasets and tasks.

4.2. Implementation Details

The comparison in Tab. 1 uses ABMIL [15] as the slide-
level backbone, while all backbones in Tab. 2 are initial-
ized from scratch without pretraining. Models were trained
for 100 epochs—20 for warmup and 80 for main train-
ing—using the Adam optimizer with an initial learning rate
of 1 x 107* and a cosine decay schedule annealing to
1 x 1076 (1% of the initial value). The UnPuzzle [18]
framework was used for pre-processing, with each WSI di-
vided into 224 x 224 tiles represented by Gigapath [33]
feature embeddings. To minimize sampling variance, par-
ticularly for small datasets, 15 independent test inferences
with different random tile samplings were performed per
scenario, and predictions were aggregated. A batch size

of 4 was maintained for all experiments, conducted on an
Nvidia H100 GPU using Python 3.10.16, PyTorch 2.4.0,
and CUDA 12.4.

4.3. Comparison with SOTA Methods

We benchmarked SlideMix against five augmenta-
tion strategies, including CutMix [36], CutOut [12],
MixUp [37], ResizeMix [26], and PuzzleMix [16].
However, these methods operate on raw tiles or leverage
saliency maps, making them directly incompatible with the
MIL framework. To enable a fair comparison, we applied
each augmentation at the raw image level and then compute
tile embeddings from the resulting augmented images.
For faithful implementation, we utilize the original code
repositories for each baseline method. The baseline model
was trained without any data augmentation.

Tab. 1 shows that SlideMix consistently achieves supe-
rior performance across all evaluated datasets. On CAME-
LYONI16, while most augmentation methods demonstrate
gains over the baseline (93.7%), SlideMix reaches the
highest accuracy at 94.9% (+1.2%). The advantages of
SlideMix are more pronounced on the more challenging
datasets. On TCGA-Lung, SlideMix achieves 73.8% accu-
racy, representing a substantial improvement of 2.2% over
the baseline (71.6%) and 0.9% over the next-best method,
ResizeMix (72.9%). Similarly, on the PANDA dataset,
SlideMix attains 77.2% accuracy, marking a 1.3% improve-
ment over the baseline (75.9%). These results highlight
two key findings: 1) mixing-based augmentation strategies
generally outperform the baseline, confirming their effec-
tiveness for WSI analysis; and 2) among these methods,
SlideMix demonstrates the most consistent and substantial
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PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung

Method

Acc. [%] Acc. [%] Acc. [%] Acc. [%]
Baseline 75.9 93.7 95.2 71.6
Random 60.9 81.5 79.2 57.0
Linear 72.7 89.0 92.0 70.4
VLM/u 753 92.1 94.5 73.3
VLM 77.2 94.9 95.8 73.8

Table 3. Comparison between different soft labeling methods.
VLM/u represents untuned VLM.

gains across diverse pathology tasks, including classifica-
tion, staging, grading, and survival prediction.

To further verify the generalizability of SlideMix, we
evaluate its performance against two baselines, SlideAve
and SlideMax (SlideAve generates slide-level features via
global average pooling across all tiles, whereas SlideMax
employs global max pooling), and eight state-of-the-art
MIL backbones: ABMIL [15], DSMIL [17], CLAM [20],
TransMIL [28], SETMIL [43], DTFD-MIL [38], Gi-
gaPath [33], and MambaMIL [34]. As shown in Tab.
2, SlideMix generally improves performance across most
backbones on the benchmark datasets. On the PANDA
dataset, gains range from 0.6% to 1.7%, while CAME-
LYONI16 shows improvements of 1.2% to 2.5%. Notably,
substantial gains are observed for ABMIL on TCGA-Lung
(from 71.6% to 73.8%) and IMP-CRC-2024 (from 95.2%
to 95.8%). In a small number of settings, SlideMix’s
performance is marginally lower, likely due to dataset or
model architecture differences, but overall it delivers clear
and consistent gains across diverse models and datasets.
The observed overall improvements across diverse back-
bones, from simple aggregation methods such as SlideMax
to Transformer-based models such as TransMIL, suggest
that SlideMix offers a generally model-agnostic enhance-
ment strategy for computational pathology.

5. Discussion

5.1. Visualization Analysis

To examine the impact of different augmentation methods
on model attention, we visualize Class Activation Maps
(CAMs) using Grad-CAM [9]. We compared CAMs from
the baseline model (no augmentation) with those from var-
ious augmentation methods. As shown in Fig. 7, SlideMix
effectively guides the model to focus on task-relevant re-
gions and delineate feature boundaries more clearly. Com-
pared to the baseline and other methods, SlideMix enables
richer WSI representations, enhancing cross-feature atten-
tion at both local (specific pathological regions) and global
scales (contextualizing regions within the whole slide).

5.2. Soft Labeling Approach Analysis

We compared the performance of the baseline with four dif-
ferent labeling strategies on SlideMix: The Random ran-

PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung

Method

Eff. [s] Eff. [s] Eff. [s] Eff. [s]
Raw Image 23.1 5124 357.7 4114
Embedding 0.31 8.2 53 7.2

Acc. [%] Acc. [%] Acc. [%] Acc. [%]

Sequential 754 93.1 93.9 72.8
Local-box 74.9 92.5 94.1 72.3
Z-order 76.4 94.1 94.7 733
Random 77.2 94.9 95.8 73.8

Table 4. Performance comparison between different shuffling
methods. Eff. (Efficiency) represents processing time per WSL.

domly chooses a label from one of the two source WSIs.
Linear calculates the label /s as a weighted average of the
original labels [, [,,, and the weight f corresponds to the
content ratio of two WSIs S, S,,, in the shuffled WSI S;.

le=flo+ (1=l 1oyl ls € R 9)

where C' is the number of classes. VLM/u directly ap-
plies the untuned CONCH as the soft labeler, and VLM,
which we adopt, utilizes CONCH with RAG support. Tab. 3
shows that: 1) Random fails to provide accurate labels, sub-
stantially limiting model performance compared with the
baseline (—15.0% Avg. Acc.). 2) Linear provides relatively
more accurate labels but still struggles under weak supervi-
sion, performing below the baseline (—2.5% Avg. Acc.). 3)
VLM/u significantly improves overall performance and sur-
passes the baseline (+0.4% Avg. Acc.), though it slightly
underperforms on IMP-CRS-2024 (—0.7% Acc.). 4) VLM
achieves improvements on all tested datasets (+2.4% Avg.
Acc.), demonstrating the effectiveness of our approach.

5.3. Shuffling & Sampling Approach Analysis

We first compared the stage at which shuffling is applied.
Raw image takes the raw WSIs, pre-processes them, shuf-
fles the WSIs, then uses GigaPath to generate the shuffled
tile embeddings on the shuffled WSI. Embedding takes
both raw WSIs and embedded tiles, generates the shuffled
coordinates based on raw WSIs, then organizes the embed-
ded tiles based on the coordinates. Tab. 4 shows that oper-
ating directly on tile embeddings skips the redundant tile-
embedding process, significantly reducing the processing
time per WSI during augmentation (65.4x Avg. Eff.).

We then compared four sampling strategies. In MIL,
only a fixed-size subset of tiles in a WSI is sent into the
slide-level backbone for training efficiency, and the sam-
pling strategy controls which tiles are in the subset. The
baseline, Sequential, directly samples the tiles row by row;
Z-order samples tiles in Z-order to preserve the inter-tile
spatial information [25]; Local-box selects several central
points, then samples tiles in a given radius around these
points; Random randomly samples tiles over the whole
WSI. Tab. 4 shows that: 1) Local-box fails to sample more
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Figure 7. Grad-CAM visualization for ABMIL trained with different augmentation methods. Baseline is trained without any augmentation.

useful tiles compared with Sequential (-0.5% Avg. Acc.), as
the feature integrity in shuffled WSIs are already disrupted,
and local sampling doesn’t help provide the useful spatial
information. 2) Z-order performs slightly better than Se-
quential (+0.6% Avg. Acc.), as it is not severely affected
by the shuffling process. 3) Random significantly surpasses
Sequential (+1.5% Avg. Acc.), as it is inherently compati-
ble with the shuffling process, and facilitates the model to
learn cross-tile feature relationships.

5.4. Curriculum Learning Analysis

We first compared the performance of three loss-driven
strategies. Fixed maintains constant difficulty parameters
throughout the entire training process. Loss-back reduces
the difficulty parameters when the validation loss [ is lower
than the performance threshold 7},ss. Loss-hold maintains
the current difficulty parameters when | < Tj,ss. Tab. 5
shows that: 1) Loss-back guides the model to learn fea-
tures step by step. This dynamic process significantly out-
performs Fixed (+0.3% Avg. Acc.). 2) Loss-hold further
maintains the difficulty as a stricter teacher, further surpass-
ing Fixed (+1.1% Avg. Acc.).

We evaluated each scheduler’s contribution, where All
activates all schedulers and Set 1, 2, 3 disable the shuf-
fle ratio, PCA similarity, and shuffle granularity schedulers,
respectively. Tab. 5 shows that Set 3 has the worst perfor-
mance (-2.9% Avg. Acc.), demonstrating the critical impor-
tance of shuffle granularity scheduling. Set 1 drops -2.3%
Avg. Acc., highlighting the shuffle ratio scheduler’s im-
portance, while Set 2’s slight decline (-0.6% Avg. Acc.)
suggests room for improvement in PCA similarity schedul-
ing. All schedulers contribute meaningfully to overall per-
formance.

PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung

Method
Acc. [%] Acce. [%] Acc. [%] Acc. [%]
Fixed 75.9 93.7 94.6 73.1
Loss-back 76.4 93.7 95.2 73.6
Loss-hold 772 94.9 95.8 73.8
Set 1 75.0 92.7 94.1 72.3
Set 2 76.6 94.2 95.4 73.3
Set 3 74.3 91.9 93.6 71.8
All 77.2 94.9 95.8 73.8
Table 5. Comparison between different loss-driven strategies

and different schedulers. Shuffle ratio scheduler, PCA similarity
threshold scheduler, and shuffle granularity scheduler are disabled
respectively in set 1, 2, and 3.

6. Conclusion

We introduce SlideMix, a multimodal dynamic data
augmentation framework that enhances WSI analysis.
SlideMix employs VARS to adaptively select label-relevant
regions for the in-place tile shuffling in ITS. This process
is guided by CLF, which promotes progressive, multi-scale
feature learning. Tabs. 1-5 and Fig. | show that SlideMix
effectively mitigates three key challenges in WSI analy-
sis: weak supervision, spatial heterogeneity, and cross-
scale feature fusion. Extensive experiments across 11
benchmark datasets confirmed that SlideMix generally im-
proves accuracy and generalization on diverse pathologi-
cal tasks, outperforming existing SOTA methods like Cut-
Mix, MixUp, and PuzzleMix. By coupling multimodal rea-
soning with adaptive feature-level mixing, SlideMix pro-
vides a scalable and architecture-agnostic augmentation
paradigm for computational pathology. Future work will
focus on integrating generative priors to enhance sample
realism and extending the SlideMix framework to multi-
modal clinical datasets that include genomics and radiol-

ogy.
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