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Abstract

Pathological whole slide images (WSIs) are pivotal in can-001
cer diagnosis, but their gigapixel scales and complex het-002
erogeneity make the manual review slow and may lead003
to inconsistent conclusions. Deep learning studies are004
therefore applied yet three obstacles persist in WSI anal-005
ysis: (i) weak supervision from slide-level labels without006
region-level guidance, (ii) locally homogeneous yet glob-007
ally heterogeneous tissue that complicates spatial reason-008
ing, and (iii) cross-magnification patterns that call for ef-009
fective multi-scale pattern modeling. Existing architectural010
innovations’ improvements remain limited and inconsistent011
across the benchmarking datasets. The recent augmenta-012
tions (e.g., CutMix) draw new insight but only partially ad-013
dress these issues and introduce label-irrelevant supervi-014
sion signals. We propose SlideMix, a model-agnostic mul-015
timodal augmentation framework for WSI backbones that:016
(1) employs a VLM-based Visual-language Adaptive Re-017
gion (VAR) selector to mitigate weak-label noise by pri-018
oritizing diagnostically relevant regions; (2) performs In-019
place Tile Shuffling (ITS) to balance local homogeneity with020
global heterogeneity without breaking slide context; and (3)021
integrates a multi-factor, loss-driven, online Curriculum-022
Learning Feedback (CLF) scheme for progressive cross-023
scale representation learning. Across 11 WSI benchmarks,024
SlideMix consistently improves accuracy and generaliza-025
tion over strong state-of-the-art backbones. The extensive026
experiments highlight SlideMix as a simple, plug-and-play027
route to more robust and scalable digital pathology models.028
The project will be open-sourced.029

1. Introduction030

Pathology diagnosis serves as the gold standard for cancer031
diagnosis, relying on microscopic image interpretation to032
ensure accurate disease identification and treatment plan-033
ning [14]. In modern digital pathology, tissue biopsies are034
routinely digitized into gigapixel-scale Whole Slide Images035
(WSIs), which preserve rich spatial details and multi-scale036
tissue features. However, their massive size makes manual037

Figure 1. Visualization of an augmented example. Compared to
other mixing-based methods, SlideMix accurately identifies tile
and instance boundaries. It further distinguishes effectively be-
tween negative and positive samples.

review both labor-intensive and dependent on highly spe- 038
cialized expertise, often leading to inconsistencies and vari- 039
ability in diagnostic outcomes [18]. 040

Deep learning techniques have been increasingly 041
adopted to assist in WSI analysis by automatically identify- 042
ing and categorizing critical histological patterns [35, 41]. 043
Recent methods currently employ Multiple Instance Learn- 044
ing (MIL), a two-stage framework designed to overcome 045
GPU memory limits imposed by gigapixel-scale slides [31]. 046
Specifically, in the first stage of MIL, WSIs are divided 047
into smaller tiles (e.g., 224× 224 pixels from a 100, 000× 048
80, 000-pixel WSI), and encoded into feature embeddings 049
using a tile-level foundation model (e.g. UNI [7]). In the 050
second stage, the tile embeddings are aggregated into bags 051
to produce slide-level predictions with a slide-level model 052
(e.g. TransMIL [28]) [40, 42]. Although practical, the in- 053
herent complexity and multi-scale nature of WSIs continue 054
to challenge existing models, particularly in their ability 055
to effectively integrate cross-scale information [35]. Three 056
core challenges can thus be identified: 057

1) Weak supervision from scarce fine-grained anno- 058
tations [13]. Unlike natural images, only a small frac- 059
tion of regions within a WSI (often < 1%) are label- 060
relevant. This extreme imbalance between informative and 061
non-informative regions greatly complicates the learning 062
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Figure 2. Overview of the MIL pipeline integrated with SlideMix. (a) Two WSIs from the same dataset are selected, tiled, and embedded
into feature vectors for efficient computation. (b) The corresponding low-resolution WSIs are input into a fine-tuned VLM, which identifies
label-relevant regions for mixing. (c) Coordinates of the selected candidate regions are passed to the data augmentation module, where
the embedded tiles from stage one of MIL are shuffled in place according to three adjustable parameters N , TPCA, and P provided by
the CLF, creating a new mixed sample. (d) The mixed sample is then processed by another VLM to generate a soft mixed label. (e) This
new sample–label pair is fed into the tile sampler and subsequent training module. (f) Finally, the training loss is used to update the three
aforementioned CLF parameters, enabling the ITS to automatically adjust the difficulty of the mixed samples throughout training.

of discriminative features, as irrelevant tiles dominate the063
training process and weaken label-feature alignment.064

2) Spatial modeling impaired by local homogeneity and065
global heterogeneity [42]. Pathological structures exhibit066
strong local continuity but substantial global diversity. This067
dual characteristic complicates spatial reasoning, as mod-068
els must simultaneously preserve fine-grained local consis-069
tency while capturing long-range dependencies across the070
entire slide—a challenge that becomes increasingly pro-071
nounced with larger WSI dimensions.072

3) Multi-scale nature against limited feature fusion073
capability [8]. WSIs contain features spanning multiple074
scales, from cellular to organ-level structures, and different075
diagnostic tasks emphasize distinct scales. For instance, tu-076
mor purity regression depends on global contextual under-077
standing, while EGFR mutation prediction demands precise078
modeling of cellular morphology.079

To address these challenges, prior studies have explored080
architectural innovations [8, 15] and data augmentation081
methods [11, 25, 29]. However, these approaches often082
overlook key properties of pathological images (Fig. 1), in-083
cluding their multi-scale nature and severe label imbalance084
caused by large proportions of irrelevant regions. More-085
over, most augmentation techniques remain static, limiting086
adaptability across diverse WSIs and tasks.087

To this end, we propose SlideMix, a novel multimodal088
data augmentation framework for MIL-based WSI analy-089

sis (Fig. 2). SlideMix integrates a Visual-Language Model 090
(VLM)-guided region selector, an in-place tile shuffling 091
mechanism, and an adaptive curriculum feedback loop. To- 092
gether, these components address the aforementioned chal- 093
lenges through three key innovations: 094

1) We propose a VLM-based Adaptive Region (VAR) 095
Selector that employs Retrieval-Augmented Generation 096
(RAG) to retrieve domain-relevant knowledge and identify 097
diagnostically significant ROIs at the lowest WSI scale, mit- 098
igating weak supervision effects. 099

2) We design an efficient In-place Tile Shuffling (ITS) 100
module that mixes tile embeddings between WSIs using 101
ROI coordinates from the VARS, balancing local homo- 102
geneity and global heterogeneity. A VLM generates soft 103
labels from the mixed WSIs to create new training data. 104

3) We introduce a multi-factor Curriculum Learning 105
Feedback (CLF) module that adaptively adjusts the shuf- 106
fle ratio, PCA similarity threshold, and shuffle granularity 107
in the ITS module based on loss evaluation, enabling pro- 108
gressive cross-scale feature learning. 109

Experimental results show that SlideMix improves per- 110
formance over 8 pathological tasks across 10 state-of-the- 111
art WSI models on 11 pathological WSI datasets with 112
20,523 WSIs, demonstrating its robustness and adaptability. 113
By providing new insights into multimodal feature regroup- 114
ing, SlideMix improves model generalization and diagnos- 115
tic accuracy in digital pathology applications. 116
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2. Related Works117

2.1. Data Augmentation118

Data augmentation is a cornerstone technique in deep learn-119
ing, designed to enhance model generalization and robust-120
ness by artificially expanding the training dataset. For121
natural images, common methods include simple geomet-122
ric and color transformations, such as flipping, rotating,123
and color jittering [6]. However, these generic augmen-124
tations often fail to capture the unique and complex char-125
acteristics of pathological images. Consequently, domain-126
specific augmentation techniques have been developed.127
Early pathology-specific methods operated at the tile-level,128
including stain normalization [11] and the generation of129
synthetic artifacts using GANs [27] or latent-space [24]130
models. Although more relevant to pathology, these meth-131
ods overlook the broader spatial context and multi-scale fea-132
tures inherent in a WSI. More recent methods have shifted133
toward feature-level augmentation in the second stage of134
MIL to better model spatial relationships. For instance,135
Z-Order sampling [25] processes tiles in Z-order to pre-136
serve the smallest spatial distance between the tiles, encour-137
aging the model to learn spatial dependencies. However,138
such methods remain label-agnostic, applying uniformly139
across the entire WSI, and inadvertently mixing large label-140
irrelevant regions with the few diagnostically critical ones.141
This introduces substantial noise and hinders the model’s142
ability to learn discriminative features.143

2.2. Visual Language Models144

Visual-Language Models (VLMs) have demonstrated re-145
markable capabilities in bridging vision and natural lan-146
guage, enabling complex reasoning that requires multi-147
modal understanding[3, 39]. These models are often pre-148
trained on large datasets of image-text pairs and excel at149
zero-shot generalization for tasks such as image classifica-150
tion, object detection, and visual question answering. In the151
medical domain, VLMs are increasingly applied to inter-152
pret complex medical imagery by leveraging associated tex-153
tual information, such as clinical notes or pathology reports154
[19, 32]. Their ability to ground textual concepts within vi-155
sual data makes them particularly promising for localizing156
ROIs in WSIs. However, most pathology applications of157
VLMs have focused on direct diagnosis or report genera-158
tion. In contrast, our approach uses a VLM not as a direct159
diagnostic tool, but as an intelligent guidance mechanism.160

2.3. Curriculum Learning161

Curriculum learning is a training strategy inspired by hu-162
man cognition, in which models are presented with train-163
ing examples in a structured order [2]. The model first164
learns simpler concepts and then progressively tackles more165
difficult ones, which facilitates faster convergence and im-166

Figure 3. The proposed VARS: a) The task label L and a visual-
language model (VLM) region prompt P are sent to a retrieval-
augmented generation (RAG) system R to retrieve the top-K rel-
evant medical data sources D from PubMed D. b) The WSI S at
lowest magnification is processed by the visual encoder Gv of the
modified Gemini model Gemf to extract visual features F , which
are partitioned into large regions. c) F , L, and D are fused via
the multimodal connector Gm within Gemf . d) Gemini predicts
outcomes for each region, while the coordinate generator Gp pro-
poses coordinates C for potential regions of interest (ROIs).

proved performance. However, due to the complex and het- 167
erogeneous nature of WSIs, defining an effective curricu- 168
lum in computational pathology is challenging. Previous 169
WSI data augmentation methods applied fixed augmenta- 170
tion rules throughout training [25], failing to adapt to the 171
model’s evolving learning state or to the varying complex- 172
ity of different WSIs and diagnostic tasks. 173

3. Methods 174

3.1. Data Pre-processing and Tile Embedding 175

A WSI S is first loaded at a target microns-per-pixel (mpp) 176
resolution, then partitioned into a non-overlapping grid of 177
tiles {Ti,j} of a corresponding size Tsize (Fig. 2a). A two- 178
stage filtering protocol is employed to ensure the quality of 179
the selected regions. It first discards tiles with tissue cov- 180
erage below a predefined threshold (e.g., < 50% of the tile 181
area), then removes tiles where the pixel variance falls be- 182
low a quantitative cutoff (e.g., V ar(I) < 0.01 , where I 183
represents the pixel intensity normalized to the [0,1] range.). 184
This ensures only valid tiles are retained for the down- 185
stream. Following pre-processing, each filtered tile is em- 186
bedded into a dense, semantic feature vector (Fig. 2a) using 187
a pathological foundation model (e.g., UNI [7]). This em- 188
bedding process boosts both training efficiency and perfor- 189
mance of the slide-level model (e.g., ABMIL [15]). 190

3.2. VLM-based Adaptive Region Selector 191

To dynamically select the label-related regions in WSIs, 192
we propose VLM-based Adaptive Region Selector (VARS) 193
(Fig. 3). Instead of conventional static selectors, VARS dy- 194
namically analyzes the WSIs, proposing the coordinates of 195
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Figure 4. The proposed CLF module dynamically adjusts three
schedulers based on training loss l and threshold Tloss. a) Shuffle
Granularity (N ) controls shuffling region scale. b) PCA similarity
threshold (TPCA) governs feature similarity between tiles selected
for shuffling. c) Shuffle Ratio (P ) sets the proportion of shuffled
tiles. These updated parameters are then passed to the ITS module
to configure the next augmentation.

the regions related to the labels. These proposals signifi-196
cantly enhance the impact of the downstream shuffling pro-197
cess. In VARS, we integrate a VLM, Gemini [30], with a198
Retrieval-Augmented Generation (RAG) system.199

In a single augmentation process, two VARS will handle200
two WSIs from the same dataset simultaneously (Fig. 2b).201
In a VARS, a WSI S is loaded at the lowest magnification202
level (highest mpp) for efficiency, then passed into the vi-203
sual encoder Gv of the modified Gemini Gemf to generate204
the visual features F :205

F = Gv(S) (1)206

Accordingly, the task labels L (e.g., OS Months: 36.5) of207
this WSI and a VLM prompt P (e.g., “Identify key patho-208
logical regions in this WSI.”) are sent together into RAG R.209
It allows Gemini to retrieve knowledge from the PubMed210
database D [5] in real-time, enhancing its performance:211

D = RD(L,P ) (2)212

After that, the multimodal connector Gm of Gemf first fuses213
F , L, and D. This combined representation is then passed214
to the predictor Gp (also of Gemf ) to propose the task-215
specific regions coordinates C:216

C = Gp(Gm(F,L,D)) (3)217

The result C guides the downstream augmentation modules218
to apply shuffling only to the selected meaningful regions.219

3.3. Curriculum Learning Feedback Module220

To enable gradual cross-scale feature learning, we imple-221
ment the Curriculum Learning Feedback (CLF) module222
(Fig. 4). It dynamically adjusts the difficulty of the data223

augmentation in the downstream ITS module based on the 224
model’s performance. In CLF, the curriculum starts with 225
simple augmentations and progressively increases the dif- 226
ficulty by three schedulers controlling shuffle granularity, 227
PCA similarity threshold, and shuffle ratio. The difficulty is 228
set by comparing the model’s current training loss l against 229
a performance threshold Tloss. 230
Shuffle Granularity (N ): This scheduler determines the 231
feature scale the model learns to recognize. It first groups 232
tile embeddings into different sizes, denoted as N×N , The 233
curriculum starts with large N (e.g., 16 × 16), a relatively 234
easy task that lets the model learn the coarse-grained fea- 235
tures (e.g., the boundaries between different tissues). It then 236
gradually decreases N in the sequence of [N0, N1, ..., Nn], 237
where Ni+1 < Ni. In the end, the model will learn from the 238
most fine-grained patterns (e.g., the features inside a cell). 239
PCA Similarity Threshold (TPCA): This scheduler deter- 240
mines the feature similarity the model learns to recognize. 241
Tile embeddings close in PCA space are also close in label 242
space [22]. We define the distance PCA∆(ei, ej) between 243
the principal components of two tiles ei and ej as: 244

PCA∆(ei, ej) = |PCA(ei)− PCA(ej)|2 (4) 245

To ensure a consistent difficulty scale, we min-max 246
normalize this distance to [0, 1] using the statistics 247
(PCAmin, PCAmax) from the entire training set D: 248

PCA′
∆ =

PCA∆ − PCAmin

PCAmax − PCAmin
(5) 249

A threshold TPCA ∈ [0, 1] constrains the shuffling: a 250
tile pair can be shuffled only if PCA′

∆(ei, ej) < TPCA. 251
The curriculum starts with a relatively high TPCA (allow- 252
ing dissimilar tiles to be shuffled), then gradually decreases 253
the PCA similarity threshold, [TPCA,0, ..., TPCA,n], where 254
TPCA,i+1 < TPCA,i. At the end, the model is forced to 255
learn fine-grained differences, as only the most similar tiles 256
are permitted to be shuffled. 257
Shuffle Ratio (P ): This scheduler determines the feature 258
integrity the model learns to recognize. It controls the shuf- 259
fle ratio, denoted as P ∈ [0, 1]. The curriculum starts with a 260
low P , a relatively easy task that lets the model learn from 261
relatively intact features (e.g., 90% integrity). It then grad- 262
ually increases P in the sequence of [P0, P1, ..., Pn], where 263
Pi+1 > Pi. In the end, the model will learn from the highly 264
fragmented features. 265

The parameters of all three schedulers are updated at the 266
end of each training epoch. We implement the loss-hold 267
strategy as the update rule. Let Θi = (Pi, Ni, TPCA,i) rep- 268
resent the curriculum parameters at epoch i. The parameters 269
for the subsequent epoch Θi+1 are: 270

Θi+1 =

{
(Pi+1, Ni+1, TPCA,i+1) if l < Tloss

Θi otherwise
(6) 271
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Figure 5. The ITS module operates as follows: a) a pair of embed-
ded WSIs are provided and assigned as ‘reference’ and ‘moving’;
b) each WSI is segmented into biological objects approximated by
convex hulls; c) the reference WSI is enclosed within its minimal
bounding box, and the moving WSI aligns to maximize overlap;
d) overlapping regions are shuffled based on ITS configuration and
CLF parameters; and e) soft labels for the mixed image are gener-
ated using a VLM, forming a new training sample.

This ensures difficulty only escalates after the model mas-272
ters the current difficulty level.273

3.4. In-place Tile Shuffling Module274

To dynamically shuffle tiles and generate corresponding275
soft labels, we introduce the In-place Tile Shuffling (ITS)276
module (Fig. 5). It dynamically moves instances in a WSI277
pair to create the maximum overlaps for better shuffling,278
and generate soft-labels on the augmented WSI with a VLM279
to guarantee the accuracy of the labels.280

The process starts with a input raw WSI pair from ITS,281
whose roles are determined as the static reference WSI (Sr)282
and the moving WSI (Sm).283

To create the maximum overlaps for a meaningful WSI284
augmentation, we align the biological structures of Sm to285
Sr before shuffling. The spatial layout of a WSI S is repre-286
sented as a set of tile coordinates T ⊂ Z2. T is partitioned287
into disjoint, connected components {z1, z2, ..., zn}, where288
each zi corresponds to a distinct biological structure (e.g., a289
contiguous tissue section):290

T =

n⋃
i=1

zi, where zi ∩ zj = ∅ for i ̸= j (7)291

Each component zi is treated as an independently movable292
object. We seek an optimal set of 2D translation vectors293
Θ = {θ1, ...,θn} for Sm’s components (zm,i) to maximize294
the spatial overlap with Sr’s coordinates Tr:295

Θ∗ = argmax
Θ

∣∣∣∣∣
(

n⋃
i=1

(zm,i + θi)

)
∩ Tr

∣∣∣∣∣ (8)296

Directly optimizing this objective on millions of tiles is297
computationally prohibitive. To create a tractable problem,298

we approximate each tissue component zi with its convex 299
hull Conv(zi). A standard optimizer then solves for the 300
translations Θ∗ that align the convex hulls. Once found, 301
these optimal offsets are applied to the original tile coordi- 302
nates of Sm to produce an aligned WSI Sa. 303

The shuffling process occurs within the aligned, over- 304
lapping region Tr ∩ Tm in Sa. The coordinates of tile em- 305
beddings from Sm and Sr are randomly shuffled due to the 306
configurations (P,N, TPCA) from ITS. This shuffled WSI 307
Ss contains a semantically coherent fusion of tissue struc- 308
tures from both Sr and Sm. 309

We then integrate CONCH [21], a pathological VLM, 310
with our RAG system as a soft-labeler to generate the cor- 311
responding soft labels Ls. Similar to the Gemini in VARS, 312
CONCH sends the labels and prompts to the PubMed 313
database and retrieves medical knowledge for assistance. 314
The CONCH VLM uses a different embedding system, so 315
the same mixed image is re-recalculated with different tile 316
embeddings only for soft-labeling. 317

3.5. Slide-level Feature Modeling 318

Augmented WSI Ss and labels Ls are passed to the slide- 319
level backbone (e.g., TransMIL [28]) to generate the final 320
slide-level predictions for different downstream tasks, fol- 321
lowing the conventional MIL pipeline. At the end of the 322
epoch, the validation loss is sent back to CLF to adjust the 323
parameters for the next augmentation. 324

4. Experiment 325

4.1. Datasets and Downstream Tasks 326

To demonstrate its effectiveness and generalizability, we 327
evaluated SlideMix on 11 datasets across eight downstream 328
tasks covering diverse diagnostic scenarios (Fig. 6). The 329
PANDA [4] dataset with the Gleason Score task assesses 330
prostate cancer aggressiveness, while CAMELYON16 [1] 331
with the Breast Metastasis task classifies lymph nodes 332
as normal or tumorous. IMP-CRS-2024 [23] with the 333
CRC-Tumor task identifies tumor tissues in colorectal im- 334
ages. The TCGA [10] datasets cover multiple cancer 335
types and tasks: TCGA-Lung performs Cancer Subtyp- 336
ing, distinguishing lung cancer variants; TCGA-BLCA 337
performs Cancer Staging, assessing bladder cancer pro- 338
gression; TCGA-UCEC and TCGA-CESC perform Can- 339
cer Grading on uterine and cervical tissues, respectively, 340
determining tumor differentiation levels; TCGA-UCS and 341
TCGA-UVM perform Histological Diagnosis, classifying 342
uterine and uveal tissue subtypes based on morphology; and 343
TCGA-BRCA and TCGA-GBM perform the OS-Months 344
task, predicting patient survival time in months from breast 345
and brain tissue morphology, respectively. 346
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Table 1. Benchmarking SlideMix Against SOTA Augmentation Methods With ABMIL.

Method PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung TCGA-BLCA TCGA-UCEC TCGA-CESC TCGA-UCS TCGA-UVM TCGA-BRCA TCGA-GBM

Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Corr. Corr.

Baseline 75.9 93.7 95.2 71.6 48.4 67.5 54.4 58.3 62.5 0.449 0.614
MixUp 76.3 94.1 95.4 72.1 49.2 68.1 54.8 59.1 63.2 0.461 0.625
CutMix 76.8 94.5 95.6 72.5 49.7 68.6 55.2 59.8 63.8 0.472 0.628
CutOut 75.2 93.1 94.8 71.2 47.8 66.9 53.9 57.5 61.8 0.438 0.608
ResizeMix 77.1 94.8 95.8 72.9 50.1 69.1 55.6 60.3 64.2 0.478 0.632
PuzzleMix 76.6 94.3 95.5 72.3 49.5 68.4 55.0 59.5 63.5 0.467 0.627
SlideMix 77.2 94.9 95.8 73.8 51.6 69.8 55.3 66.7 68.8 0.521 0.637

Table 2. Impact of SlideMix on SOTA MIL Backbones Performance (Larger values in bold).

Method
PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung TCGA-BLCA TCGA-UCEC TCGA-CESC TCGA-UCS TCGA-UVM TCGA-BRCA TCGA-GBM

Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Acc. [%] Corr. Corr.

Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

SlideAve 66.7 68.1 69.6 71.2 92.3 93.2 75.1 74.6 51.1 52.2 68.3 69.6 52.6 52.6 58.3 62.5 75.0 71.9 0.529 0.541 0.539 0.556
SlideMax 62.5 64.2 95.3 94.6 93.1 94.1 75.7 75.1 53.8 54.9 69.2 70.4 47.4 49.1 41.7 45.8 31.2 37.5 0.520 0.514 0.463 0.485
ABMIL 75.9 77.2 93.7 94.9 95.2 95.8 71.6 73.8 48.4 51.6 67.5 69.8 54.4 55.3 58.3 66.7 62.5 68.8 0.449 0.521 0.614 0.637
CLAM 76.0 76.8 73.4 74.7 92.9 93.7 72.2 73.2 50.0 49.5 64.2 65.8 54.4 52.6 58.3 58.3 68.8 71.9 0.537 0.551 0.288 0.308
DSMIL 78.5 78.1 86.1 87.3 94.6 95.4 73.4 74.3 56.8 55.9 71.7 70.8 50.9 52.6 58.3 63.3 62.5 65.6 0.532 0.548 0.509 0.528
TransMIL 76.2 75.8 93.7 94.3 95.2 95.9 73.4 74.1 46.6 48.4 69.2 68.3 50.9 52.6 66.7 70.8 56.2 59.4 0.504 0.519 0.648 0.641
SETMIL 78.2 78.0 94.1 93.8 95.6 95.5 75.8 76.0 57.3 57.1 70.5 70.6 55.1 55.2 68.9 69.1 71.8 72.0 0.562 0.560 0.625 0.627
DTFD-MIL 78.9 78.7 94.8 94.5 95.9 96.0 85.2 85.0 58.1 58.3 71.2 71.0 55.8 55.5 70.3 70.1 72.5 72.6 0.574 0.572 0.638 0.635
GigaPath 77.9 78.5 84.5 85.8 94.9 95.1 75.1 75.7 52.2 53.8 68.3 69.2 50.9 52.6 50.0 54.2 56.2 59.4 0.636 0.629 0.618 0.632
MambaMIL 78.6 78.4 94.5 94.7 95.7 95.6 76.3 76.5 58.9 58.7 70.8 71.0 54.7 54.5 69.5 69.8 73.1 73.3 0.568 0.566 0.631 0.633

Figure 6. Summary of implemented datasets and tasks.

4.2. Implementation Details347

The comparison in Tab. 1 uses ABMIL [15] as the slide-348
level backbone, while all backbones in Tab. 2 are initial-349
ized from scratch without pretraining. Models were trained350
for 100 epochs—20 for warmup and 80 for main train-351
ing—using the Adam optimizer with an initial learning rate352
of 1 × 10−4 and a cosine decay schedule annealing to353
1 × 10−6 (1% of the initial value). The UnPuzzle [18]354
framework was used for pre-processing, with each WSI di-355
vided into 224 × 224 tiles represented by Gigapath [33]356
feature embeddings. To minimize sampling variance, par-357
ticularly for small datasets, 15 independent test inferences358
with different random tile samplings were performed per359
scenario, and predictions were aggregated. A batch size360

of 4 was maintained for all experiments, conducted on an 361
Nvidia H100 GPU using Python 3.10.16, PyTorch 2.4.0, 362
and CUDA 12.4. 363

4.3. Comparison with SOTA Methods 364

We benchmarked SlideMix against five augmenta- 365
tion strategies, including CutMix [36], CutOut [12], 366
MixUp [37], ResizeMix [26], and PuzzleMix [16]. 367
However, these methods operate on raw tiles or leverage 368
saliency maps, making them directly incompatible with the 369
MIL framework. To enable a fair comparison, we applied 370
each augmentation at the raw image level and then compute 371
tile embeddings from the resulting augmented images. 372
For faithful implementation, we utilize the original code 373
repositories for each baseline method. The baseline model 374
was trained without any data augmentation. 375

Tab. 1 shows that SlideMix consistently achieves supe- 376
rior performance across all evaluated datasets. On CAME- 377
LYON16, while most augmentation methods demonstrate 378
gains over the baseline (93.7%), SlideMix reaches the 379
highest accuracy at 94.9% (+1.2%). The advantages of 380
SlideMix are more pronounced on the more challenging 381
datasets. On TCGA-Lung, SlideMix achieves 73.8% accu- 382
racy, representing a substantial improvement of 2.2% over 383
the baseline (71.6%) and 0.9% over the next-best method, 384
ResizeMix (72.9%). Similarly, on the PANDA dataset, 385
SlideMix attains 77.2% accuracy, marking a 1.3% improve- 386
ment over the baseline (75.9%). These results highlight 387
two key findings: 1) mixing-based augmentation strategies 388
generally outperform the baseline, confirming their effec- 389
tiveness for WSI analysis; and 2) among these methods, 390
SlideMix demonstrates the most consistent and substantial 391
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Method PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung

Acc. [%] Acc. [%] Acc. [%] Acc. [%]

Baseline 75.9 93.7 95.2 71.6
Random 60.9 81.5 79.2 57.0
Linear 72.7 89.0 92.0 70.4
VLM/u 75.3 92.1 94.5 73.3
VLM 77.2 94.9 95.8 73.8

Table 3. Comparison between different soft labeling methods.
VLM/u represents untuned VLM.

gains across diverse pathology tasks, including classifica-392
tion, staging, grading, and survival prediction.393

To further verify the generalizability of SlideMix, we394
evaluate its performance against two baselines, SlideAve395
and SlideMax (SlideAve generates slide-level features via396
global average pooling across all tiles, whereas SlideMax397
employs global max pooling), and eight state-of-the-art398
MIL backbones: ABMIL [15], DSMIL [17], CLAM [20],399
TransMIL [28], SETMIL [43], DTFD-MIL [38], Gi-400
gaPath [33], and MambaMIL [34]. As shown in Tab.401
2, SlideMix generally improves performance across most402
backbones on the benchmark datasets. On the PANDA403
dataset, gains range from 0.6% to 1.7%, while CAME-404
LYON16 shows improvements of 1.2% to 2.5%. Notably,405
substantial gains are observed for ABMIL on TCGA-Lung406
(from 71.6% to 73.8%) and IMP-CRC-2024 (from 95.2%407
to 95.8%). In a small number of settings, SlideMix’s408
performance is marginally lower, likely due to dataset or409
model architecture differences, but overall it delivers clear410
and consistent gains across diverse models and datasets.411
The observed overall improvements across diverse back-412
bones, from simple aggregation methods such as SlideMax413
to Transformer-based models such as TransMIL, suggest414
that SlideMix offers a generally model-agnostic enhance-415
ment strategy for computational pathology.416

5. Discussion417

5.1. Visualization Analysis418

To examine the impact of different augmentation methods419
on model attention, we visualize Class Activation Maps420
(CAMs) using Grad-CAM [9]. We compared CAMs from421
the baseline model (no augmentation) with those from var-422
ious augmentation methods. As shown in Fig. 7, SlideMix423
effectively guides the model to focus on task-relevant re-424
gions and delineate feature boundaries more clearly. Com-425
pared to the baseline and other methods, SlideMix enables426
richer WSI representations, enhancing cross-feature atten-427
tion at both local (specific pathological regions) and global428
scales (contextualizing regions within the whole slide).429

5.2. Soft Labeling Approach Analysis430

We compared the performance of the baseline with four dif-431
ferent labeling strategies on SlideMix: The Random ran-432

Method PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung

Eff. [s] Eff. [s] Eff. [s] Eff. [s]

Raw Image 23.1 512.4 357.7 411.4
Embedding 0.31 8.2 5.3 7.2

Acc. [%] Acc. [%] Acc. [%] Acc. [%]

Sequential 75.4 93.1 93.9 72.8
Local-box 74.9 92.5 94.1 72.3
Z-order 76.4 94.1 94.7 73.3
Random 77.2 94.9 95.8 73.8

Table 4. Performance comparison between different shuffling
methods. Eff. (Efficiency) represents processing time per WSI.

domly chooses a label from one of the two source WSIs. 433
Linear calculates the label ls as a weighted average of the 434
original labels lr, lm, and the weight f corresponds to the 435
content ratio of two WSIs Sr, Sm in the shuffled WSI Ss. 436

ls = flr + (1− f)lm lr, lm, ls ∈ RC (9) 437

where C is the number of classes. VLM/u directly ap- 438
plies the untuned CONCH as the soft labeler, and VLM, 439
which we adopt, utilizes CONCH with RAG support. Tab. 3 440
shows that: 1) Random fails to provide accurate labels, sub- 441
stantially limiting model performance compared with the 442
baseline (−15.0% Avg. Acc.). 2) Linear provides relatively 443
more accurate labels but still struggles under weak supervi- 444
sion, performing below the baseline (−2.5% Avg. Acc.). 3) 445
VLM/u significantly improves overall performance and sur- 446
passes the baseline (+0.4% Avg. Acc.), though it slightly 447
underperforms on IMP-CRS-2024 (−0.7% Acc.). 4) VLM 448
achieves improvements on all tested datasets (+2.4% Avg. 449
Acc.), demonstrating the effectiveness of our approach. 450

5.3. Shuffling & Sampling Approach Analysis 451

We first compared the stage at which shuffling is applied. 452
Raw image takes the raw WSIs, pre-processes them, shuf- 453
fles the WSIs, then uses GigaPath to generate the shuffled 454
tile embeddings on the shuffled WSI. Embedding takes 455
both raw WSIs and embedded tiles, generates the shuffled 456
coordinates based on raw WSIs, then organizes the embed- 457
ded tiles based on the coordinates. Tab. 4 shows that oper- 458
ating directly on tile embeddings skips the redundant tile- 459
embedding process, significantly reducing the processing 460
time per WSI during augmentation (65.4× Avg. Eff.). 461

We then compared four sampling strategies. In MIL, 462
only a fixed-size subset of tiles in a WSI is sent into the 463
slide-level backbone for training efficiency, and the sam- 464
pling strategy controls which tiles are in the subset. The 465
baseline, Sequential, directly samples the tiles row by row; 466
Z-order samples tiles in Z-order to preserve the inter-tile 467
spatial information [25]; Local-box selects several central 468
points, then samples tiles in a given radius around these 469
points; Random randomly samples tiles over the whole 470
WSI. Tab. 4 shows that: 1) Local-box fails to sample more 471
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Figure 7. Grad-CAM visualization for ABMIL trained with different augmentation methods. Baseline is trained without any augmentation.

useful tiles compared with Sequential (-0.5% Avg. Acc.), as472
the feature integrity in shuffled WSIs are already disrupted,473
and local sampling doesn’t help provide the useful spatial474
information. 2) Z-order performs slightly better than Se-475
quential (+0.6% Avg. Acc.), as it is not severely affected476
by the shuffling process. 3) Random significantly surpasses477
Sequential (+1.5% Avg. Acc.), as it is inherently compati-478
ble with the shuffling process, and facilitates the model to479
learn cross-tile feature relationships.480

5.4. Curriculum Learning Analysis481

We first compared the performance of three loss-driven482
strategies. Fixed maintains constant difficulty parameters483
throughout the entire training process. Loss-back reduces484
the difficulty parameters when the validation loss l is lower485
than the performance threshold Tloss. Loss-hold maintains486
the current difficulty parameters when l < Tloss. Tab. 5487
shows that: 1) Loss-back guides the model to learn fea-488
tures step by step. This dynamic process significantly out-489
performs Fixed (+0.3% Avg. Acc.). 2) Loss-hold further490
maintains the difficulty as a stricter teacher, further surpass-491
ing Fixed (+1.1% Avg. Acc.).492

We evaluated each scheduler’s contribution, where All493
activates all schedulers and Set 1, 2, 3 disable the shuf-494
fle ratio, PCA similarity, and shuffle granularity schedulers,495
respectively. Tab. 5 shows that Set 3 has the worst perfor-496
mance (-2.9% Avg. Acc.), demonstrating the critical impor-497
tance of shuffle granularity scheduling. Set 1 drops -2.3%498
Avg. Acc., highlighting the shuffle ratio scheduler’s im-499
portance, while Set 2’s slight decline (-0.6% Avg. Acc.)500
suggests room for improvement in PCA similarity schedul-501
ing. All schedulers contribute meaningfully to overall per-502
formance.503

Method PANDA CAMELYON16 IMP-CRS-2024 TCGA-Lung

Acc. [%] Acc. [%] Acc. [%] Acc. [%]

Fixed 75.9 93.7 94.6 73.1
Loss-back 76.4 93.7 95.2 73.6
Loss-hold 77.2 94.9 95.8 73.8

Set 1 75.0 92.7 94.1 72.3
Set 2 76.6 94.2 95.4 73.3
Set 3 74.3 91.9 93.6 71.8
All 77.2 94.9 95.8 73.8

Table 5. Comparison between different loss-driven strategies
and different schedulers. Shuffle ratio scheduler, PCA similarity
threshold scheduler, and shuffle granularity scheduler are disabled
respectively in set 1, 2, and 3.

6. Conclusion 504

We introduce SlideMix, a multimodal dynamic data 505
augmentation framework that enhances WSI analysis. 506
SlideMix employs VARS to adaptively select label-relevant 507
regions for the in-place tile shuffling in ITS. This process 508
is guided by CLF, which promotes progressive, multi-scale 509
feature learning. Tabs. 1-5 and Fig. 1 show that SlideMix 510
effectively mitigates three key challenges in WSI analy- 511
sis: weak supervision, spatial heterogeneity, and cross- 512
scale feature fusion. Extensive experiments across 11 513
benchmark datasets confirmed that SlideMix generally im- 514
proves accuracy and generalization on diverse pathologi- 515
cal tasks, outperforming existing SOTA methods like Cut- 516
Mix, MixUp, and PuzzleMix. By coupling multimodal rea- 517
soning with adaptive feature-level mixing, SlideMix pro- 518
vides a scalable and architecture-agnostic augmentation 519
paradigm for computational pathology. Future work will 520
focus on integrating generative priors to enhance sample 521
realism and extending the SlideMix framework to multi- 522
modal clinical datasets that include genomics and radiol- 523
ogy. 524
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Javier González, Yu Gu, et al. A whole-slide foundation675
model for digital pathology from real-world data. Nature,676
pages 1–8, 2024. 6, 7677

[34] Shu Yang, Yihui Wang, and Hao Chen. Mambamil: En-678
hancing long sequence modeling with sequence reordering679
in computational pathology. In International conference on680
medical image computing and computer-assisted interven-681
tion, pages 296–306. Springer, 2024. 7682

[35] Nan Ying, Yanli Lei, Tianyi Zhang, Shangqing Lyu, Chunhui683
Li, Sicheng Chen, Zeyu Liu, Yu Zhao, and Guanglei Zhang.684
Cpia dataset: A comprehensive pathological image analy-685
sis dataset for self-supervised learning pre-training. arXiv686
preprint arXiv:2310.17902, 2023. 1687

[36] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk688
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-689
larization strategy to train strong classifiers with localizable690
features. In ICCV, pages 6023–6032, 2019. 6691

[37] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and692
David Lopez-Paz. mixup: Beyond empirical risk minimiza-693
tion. In ICLR, 2018. 6694

[38] Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao, 695
Xiaoyun Yang, Sarah E Coupland, and Yalin Zheng. Dtfd- 696
mil: Double-tier feature distillation multiple instance learn- 697
ing for histopathology whole slide image classification. In 698
Proceedings of the IEEE/CVF conference on computer vi- 699
sion and pattern recognition, pages 18802–18812, 2022. 7 700

[39] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. 701
Vision-language models for vision tasks: A survey. IEEE 702
transactions on pattern analysis and machine intelligence, 703
46(8):5625–5644, 2024. 3 704

[40] Tianyi Zhang, Youdan Feng, Yunlu Feng, Yu Zhao, Yanli 705
Lei, Nan Ying, Zhiling Yan, Yufang He, and Guanglei 706
Zhang. Shuffle instances-based vision transformer for pan- 707
creatic cancer rose image classification. arXiv preprint 708
arXiv:2208.06833, 2022. 1 709

[41] Tianyi Zhang, Shangqing Lyu, Yanli Lei, Sicheng Chen, 710
Nan Ying, Yufang He, Yu Zhao, Yunlu Feng, Hwee Kuan 711
Lee, and Guanglei Zhang. Puzzletuning: Explicitly bridge 712
pathological and natural image with puzzles. arXiv preprint 713
arXiv:2311.06712, 2023. 1 714

[42] Tianyi Zhang, Zhiling Yan, Chunhui Li, Nan Ying, Yanli Lei, 715
Yunlu Feng, Yu Zhao, and Guanglei Zhang. Cellmix: A gen- 716
eral instance relationship based method for data augmenta- 717
tion towards pathology image classification. arXiv preprint 718
arXiv:2301.11513, 2023. 1, 2 719

[43] Yu Zhao, Zhenyu Lin, Kai Sun, Yidan Zhang, Junzhou 720
Huang, Liansheng Wang, and Jianhua Yao. Setmil: spa- 721
tial encoding transformer-based multiple instance learning 722
for pathological image analysis. In International Conference 723
on Medical Image Computing and Computer-Assisted Inter- 724
vention, pages 66–76. Springer, 2022. 7 725

10


	Introduction
	Related Works
	Data Augmentation
	Visual Language Models
	Curriculum Learning

	Methods
	Data Pre-processing and Tile Embedding
	VLM-based Adaptive Region Selector
	Curriculum Learning Feedback Module
	In-place Tile Shuffling Module
	Slide-level Feature Modeling

	Experiment
	Datasets and Downstream Tasks
	Implementation Details
	Comparison with SOTA Methods

	Discussion
	Visualization Analysis
	Soft Labeling Approach Analysis
	Shuffling & Sampling Approach Analysis
	Curriculum Learning Analysis

	Conclusion

